le savoir vivant
Vous êtes ici: UNIL > L'enseignement > Fiche de cours
Français | English   Imprimer   

Fiche de cours

Data Management Plan & Open Data in Life Science - ED 43

Faculté de gestion: Ecole doctorale (FBM-DOCT)

Responsable(s): Cécile Lebrand

Période de validité: 2019 -> 2019

Pas d'horaire défini.

Cours (optionnel)


Langue(s) d'enseignement: anglais
Public: Oui
Crédits: 0


At the end of the course participant should be able to put in place a DMP and to share their published data in Open Access, making possible to:
-respond to the requirements of the journals and financing agencies which require shared standards for open practices in research
-anticipate in detail the management of research data, specifying how this data is going to be analysed, organised, stored, secured and shared.
-how to use the online DMP Canvas Generator tool


During the first part of this workshop, participants will be taught best practices in data management and how to collect, describe, store, secure and archive research data. they will be introduced to the need for a Data Management Plan (DMP) preparation.The second half of the workshop will be dedicated to practical on Data management, where participants will learn how to fill a DMP corresponding to their research project and how to share their published data on adapted repository.


Travail personnel : Non
Présentation : Non
Test final : Non
Evaluation de la participation par l'enseignant : Oui


- Begley, C G, and Ioannidis, J. PA. "Reproducibility in science improving the standard for basic and preclinical research." Circulation research. 2015; 116.1: 116-126. - Chalmers I, Glasziou P. Avoidable Waste in the Production and Reporting of Research Evidence. Lancet. 2009; 374(9683): 86-89. - Freedman LP, Cockburn IM, Simcoe TS. The Economics of Reproducibility in Preclinical Research. PLoS Biol. 2015;13(6): e1002165. - Howells, D. W., Sena E.S., and Macleod, M.R. Bringing rigour to translational medicine. Nat Rev Neurol. 2014 Jan;10(1):37-43. https://www.vital-it.ch/research/software/DMPCanvasGenerator https://mantra.edina.ac.uk/ https://zenodo.org/

Exigences du cursus d'études

Knowledge / competencies
To be involve in Life Sciences research
Please bring your personal laptop as we will use it for the practical part of the course

- Une deuxième édition de ce cours se tiendra le 17.10.2019/A second edition of this course will be held on 17.10.2019 -

Conditions d'octroi

Participation active attestée par le responsable.

Conditions d'accès

Inscription auprès de l'Ecole doctorale. Série 1.

Informations supplémentaires


Canton de Vaud
Swiss University
Unicentre  -  CH-1015 Lausanne  -  Suisse  -  Tél. +41 21 692 11 11  -  Fax  +41 21 692 26 15