UNIL
le savoir vivant
Vous êtes ici: UNIL > L'enseignement > Fiche de cours
Français | English   Imprimer   

Fiche de cours

Hands-on introduction to machine learning for biomedical data - 32a/Série 3

Faculté de gestion: Ecole doctorale (FBM-DOCT)

Responsable(s): Jonas Richiardi

Période de validité: 2020 ->

Horaires du cours (Apériodique)

Date Lieu Remarque Thématique Intervenant(s)
02.03.2021 de 13:00 à 16:00 POL 204.2, Amphipôle, UNIL-Sorge Python intro: variables, data types, flow control, functions, classes, modules; Scientific packages: scipy, numpy, pandas, matplotlib; Python data science: environments, loading & saving data (tabular data, images), basic plots. Open dataset: Fisher Iris. Jonas Richiardi
09.03.2021 de 13:00 à 16:00 POL 204.2, Amphipôle, UNIL-Sorge Decision theory: supervised & unsupervised learning, classifiers, dimensionality; Binary classification: logistic regression, regularization. Intro to scikit-learn. Algorithm of the week: Elastic Net. Open dataset: Allen brain gene expresssion. Jonas Richiardi
16.03.2021 de 13:00 à 16:00 POL 204.2, Amphipôle, UNIL-Sorge Preprocessing; Feature selection: filters and wrappers; Model evaluation: cross-validation, metrics; Algorithm of the week: support vector machine (SVM). Open dataset of the week: Haxby functional MRI brain activation. Jonas Richiardi
23.03.2021 de 13:00 à 16:00 POL 204.2, Amphipôle, UNIL-Sorge Hyperparameter optimization: tuning SVMs and Elastic Nets, Bias/variance trade-off; Ensembling; Algorithms of the week: random forest, extreme gradient boosting. Open dataset of the week: Cleveland heart disease. Jonas Richiardi
30.03.2021 de 13:00 à 16:00 POL 204.2, Amphipôle, UNIL-Sorge Clustering: distance metrics, dendrograms, k-means, quality indices; Deep learning overview; Dataset of the week: BYOD (bring your own data).  

Cours

Annuel
Apériodique
Langue(s) d'enseignement: anglais
Public: Oui
Crédits: 1.00

Objectif

Machine learning approaches are gaining importance in all fields of medicine and biology. They offer multivariate predictive modelling tools focusing on individual subjects rather than group-level inference. The main goal of this tutorial is to equip students with enough knowledge and practical experience to start applying machine learning techniques to their own research project.

Contenu

We will first offer a brief hands-on introduction to Python programming, then we will cover basic decision theory, binary and multi-class problems, linear and non-linear discriminative models (in particular Elastic Net regularization, linear support vector machine, random forest, and extreme gradient boosting), feature selection, model evaluation. We will also briefly introduce unsupervised learning and deep learning approaches. In each session we will implement the discussed algorithms using standard libraries such as scikit-learn, and use open biomedical data from biology, genomics, medical imaging, and clinical domains. The last session will be a hackaton-style BYOD (Bring Your Own Data) event.

Evaluation

Travail personnel : Oui
Présentation : Oui
Test final : Non
Évaluation de la participation par le tuteur: Oui

Bibliographie

1) Hastie et al, The Elements of Statistical Learning, 2nd ed, Springer (available as free PDF)

2) Duda et al., Pattern Recognition, 2nd ed, Wiley

3) Bishop, Pattern Recognition and Machine Learning, Springer (available as free PDF)

 

Exigences du cursus d'études

Basic linear algebra and calculus; Basic statistical literacy; Some programming experience (any language); Personal laptop (any OS)

Conditions d'octroi

Evaluation positive de la participation active par le tuteur.

Conditions d'accès

Inscription: auprès de l'Ecole doctorale. Série 3

UtilisationCode facultéStatutCrédits
Doctorat en médecine et ès sciences (MD-PhD) (2010 ->) ›› Cours de 3e cycle de l'Ecole doctoraleED-FBMOptionnel1.00
Doctorat ès sciences de la vie (2003 ->) ›› Cours de 3e cycle de l'Ecole doctoraleED-FBMOptionnel1.00
Doctorat ès sciences de la vie - Ecology and Evolution (2007 ->) ›› Cours de 3e cycle de l'Ecole doctoraleED-FBMOptionnel1.00
Doctorat ès sciences de la vie - programme Cancer and Immunology (2008 ->) ›› Cours de 3e cycle de l'Ecole doctoraleED-FBMOptionnel1.00
Doctorat ès sciences de la vie - programme Cardiovasculaire et métabolisme (2005 ->) ›› Cours de 3e cycle de l'Ecole doctoraleED-FBMOptionnel1.00
Doctorat ès sciences de la vie - programme Integrated Experimental and Computational Biology (2010 ->) ›› Cours de 3e cycle de l'Ecole doctoraleED-FBMOptionnel1.00
Doctorat ès sciences de la vie - programme Microbial Sciences (2010 ->) ›› Cours de 3e cycle de l'Ecole doctoraleED-FBMOptionnel1.00
Doctorat ès sciences de la vie - programme Quantitative Biology (2018 ->) ›› Cours de 3e cycle de l'Ecole doctoraleED-FBMOptionnel1.00
Canton de Vaud
Swiss University
Unicentre  -  CH-1015 Lausanne  -  Suisse  -  Tél. +41 21 692 11 11  -  Fax  +41 21 692 26 15