Nathalie Rosenblatt-Velin

Publications | Phd and Masters theses

Advanced search is available through Serval

Publications can be managed by accessing Serval via MyUnil


39 publications

2020 | 2019 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2008 | 2006 | 2005 | 2004 | 2002 | 2001 | 2000 | 1997 | 1995 | 1994 | 1992 |
 
Impact of aerobic exercise type on blood flow, muscle energy metabolism, and mitochondrial biogenesis in experimental lower extremity artery disease.
Pellegrin M., Bouzourène K., Aubert J.F., Bielmann C., Gruetter R., Rosenblatt-Velin N., Poitry-Yamate C., Mazzolai L., 2020/08/20. Scientific reports, 10 (1) p. 14048. Peer-reviewed.
 
Oxygen as a key regulator of cardiomyocyte proliferation: New results about cell culture conditions!
Bon-Mathier A.C., Rignault-Clerc S., Bielmann C., Rosenblatt-Velin N., 2020/03. Biochimica et biophysica acta. Molecular cell research, 1867 (3) p. 118460. Peer-reviewed.
 
New Insights into the Role of Exosomes in the Heart After Myocardial Infarction.
Li N., Rochette L., Wu Y., Rosenblatt-Velin N., 2019/02. Journal of cardiovascular translational research, 12 (1) pp. 18-27. Peer-reviewed.
Natriuretic Peptide Receptor B modulates the proliferation of the cardiac cells expressing the Stem Cell Antigen-1.
Rignault-Clerc S., Bielmann C., Liaudet L., Waeber B., Feihl F., Rosenblatt-Velin N., 2017/02/09. Scientific reports, 7 p. 41936. Peer-reviewed.
Pharmacological Therapy in the Heart as an Alternative to Cellular Therapy: A Place for the Brain Natriuretic Peptide?
Rosenblatt-Velin N., Badoux S., Liaudet L., 2016. Stem Cells International, 2016 p. 5961342. Peer-reviewed.
 
Brain natriuretic peptide is able to stimulate cardiac progenitor cell proliferation and differentiation in murine hearts after birth.
Bielmann C., Rignault-Clerc S., Liaudet L., Li F., Kunieda T., Sogawa C., Zehnder T., Waeber B., Feihl F., Rosenblatt-Velin N., 2015. Basic Research in Cardiology, 110 (1) p. 455. Peer-reviewed.
Cutting edge: IL-1α is a crucial danger signal triggering acute myocardial inflammation during myocardial infarction.
Lugrin J., Parapanov R., Rosenblatt-Velin N., Rignault-Clerc S., Feihl F., Waeber B., Müller O., Vergely C., Zeller M., Tardivel A. et al., 2015. Journal of Immunology, 194 (2) pp. 499-503. Peer-reviewed.
 
Toll-like receptor 5 deficiency exacerbates cardiac injury and inflammation induced by myocardial ischaemia-reperfusion in the mouse.
Parapanov R., Lugrin J., Rosenblatt-Velin N., Feihl F., Waeber B., Milano G., Vergely C., Li N., Pacher P., Liaudet L., 2015. Clinical Science, 129 (2) pp. 187-198. Peer-reviewed.
The role of oxidative stress during inflammatory processes.
Lugrin J., Rosenblatt-Velin N., Parapanov R., Liaudet L., 2014. Biological Chemistry, 395 (2) pp. 203-230.
 
Functional late outgrowth endothelial progenitors isolated from peripheral blood of burned patients.
Rignault-Clerc S., Bielmann C., Delodder F., Raffoul W., Waeber B., Liaudet L., Berger M.M., Feihl F., Rosenblatt-Velin N., 2013. Burns, 39 (4) pp. 694-704. Peer-reviewed.
Peroxynitrite is a key mediator of the cardioprotection afforded by ischemic postconditioning in vivo.
Li J., Loukili N., Rosenblatt-Velin N., Pacher P., Feihl F., Waeber B., Liaudet L., 2013. Plos One, 8 (7) pp. e70331.
 
Role of innate immunity in cardiac inflammation after myocardial infarction.
Liaudet L., Rosenblatt-Velin N., 2013. Frontiers in Bioscience (Scholar Edition), 5 pp. 86-104. Peer-reviewed.
 
Role of peroxynitrite in the cardiovascular dysfunction of septic shock.
Liaudet L., Rosenblatt-Velin N., Pacher P., 2013. Current Vascular Pharmacology, 11 (2) pp. 196-207.
 
Cardiac dysfunction and impaired compensatory response to pressure overload in mice deficient in stem cell antigen-1.
Rosenblatt-Velin N., Ogay S., Felley A., Stanford W.L., Pedrazzini T., 2012. Faseb Journal, 26 (1) pp. 229-239.
The role of endogenous and exogenous RasGAP-derived fragment N in protecting cardiomyocytes from peroxynitrite-induced apoptosis.
Khalil H., Rosenblatt N., Liaudet L., Widmann C., 2012. Free Radical Biology and Medicine, 53 (4) pp. 926-935.
Peroxynitrite induces HMGB1 release by cardiac cells in vitro and HMGB1 upregulation in the infarcted myocardium in vivo.
Loukili N., Rosenblatt-Velin N., Li J., Clerc S., Pacher P., Feihl F., Waeber B., Liaudet L., 2011. Cardiovascular Research, 89 (3) pp. 586-594.
Bacterial flagellin elicits widespread innate immune defense mechanisms, apoptotic signaling, and a sepsis-like systemic inflammatory response in mice.
Rolli J., Loukili N., Levrand S., Rosenblatt-Velin N., Rignault-Clerc S., Waeber B., Feihl F., Pacher P., Liaudet L., 2010. Critical Care, 14 (4) p. 160.
Bacterial flagellin triggers cardiac innate immune responses and acute contractile dysfunction.
Rolli J., Rosenblatt-Velin N., Li J., Loukili N., Levrand S., Pacher P., Waeber B., Feihl F., Ruchat P., Liaudet L., 2010. Plos One, 5 (9) pp. e12687.
 
Endotoxin impairs cardiac hemodynamics by affecting loading conditions but not by reducing cardiac inotropism.
Jianhui L., Rosenblatt-Velin N., Loukili N., Pacher P., Feihl F., Waeber B., Liaudet L., 2010. American Journal of Physiology. Heart and Circulatory Physiology, 299 (2) pp. H492-H501.
 
Oxidants positively or negatively regulate nuclear factor kappaB in a context-dependent manner.
Loukili N., Rosenblatt-Velin N., Rolli J., Levrand S., Feihl F., Waeber B., Pacher P., Liaudet L., 2010. Journal of Biological Chemistry, 285 (21) pp. 15746-15752. Peer-reviewed.
Control of the adaptive response of the heart to stress via the Notch1 receptor pathway.
Croquelois A., Domenighetti A.A., Nemir M., Lepore M., Rosenblatt-Velin N., Radtke F., Pedrazzini T., 2008. Journal of Experimental Medicine, 205 (13) pp. 3173-3185. Peer-reviewed.
 
Cardiac and vascular hypertrophy in Fabry disease: evidence for a new mechanism independent of blood pressure and glycosphingolipid deposition.
Barbey F., Brakch N., Linhart A., Rosenblatt-Velin N., Jeanrenaud X., Qanadli S., Steinmann B., Burnier M., Palecek T., Bultas J. et al., 2006. Arteriosclerosis, thrombosis, and vascular biology, 26 (4) pp. 839-44.
 
FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes.
Rosenblatt-Velin N., Lepore M.G., Cartoni C., Beermann F., Pedrazzini T., 2005. Journal of Clinical Investigation, 115 (7) pp. 1724-1733. Peer-reviewed.
 
Insulin resistance in adult cardiomyocytes undergoing dedifferentiation: role of GLUT4 expression and translocation.
Rosenblatt-Velin N., Lerch R., Papageorgiou I., Montessuit C., 2004/05. FASEB journal, 18 (7) pp. 872-874. Peer-reviewed.
 
Regulation of glucose transporter expression in cardiac myocytes: p38 MAPK is a strong inducer of GLUT4.
Montessuit C., Rosenblatt-Velin N., Papageorgiou I., Campos L., Pellieux C., Palma T., Lerch R., 2004. Cardiovascular Research, 64 (1) pp. 94-104. Peer-reviewed.
 
Impaired glucose metabolism in the heart of obese Zucker rats after treatment with phorbol ester.
Morabito D., Montessuit C., Rosenblatt-Velin N., Lerch R., Vallotton M.B., Lang U., 2002. International Journal of Obesity and Related Metabolic Disorders, 26 (3) pp. 327-334. Peer-reviewed.
 
Calcium-mediated activation of pyruvate dehydrogenase in severely injured postischemic myocardium.
Terrand J., Papageorgiou I., Rosenblatt-Velin N., Lerch R., 2001. American Journal of Physiology. Heart and circulatory physiology, 281 (2) pp. H722-H730. Peer-reviewed.
 
Postinfarction heart failure in rats is associated with upregulation of GLUT-1 and downregulation of genes of fatty acid metabolism.
Rosenblatt-Velin N., Montessuit C., Papageorgiou I., Terrand J., Lerch R., 2001. Cardiovascular Research, 52 (3) pp. 407-416. Peer-reviewed.
 
Altered expression of proteins of metabolic regulation during remodeling of the left ventricle after myocardial infarction.
Remondino A., Rosenblatt-Velin N., Montessuit C., Tardy I., Papageorgiou I., Dorsaz P.A., Jorge-Costa M., Lerch R., 2000. Journal of Molecular and Cellular Cardiology, 32 (11) pp. 2025-2034. Peer-reviewed.
 
Metabolic changes in cardiac hypertrophy
Montessuit C, Rosenblatt-Velin N, Lerch R, 2000. Heart and Metabolism, 9 pp. 3-8. Peer-reviewed.
 
Postischemic recovery of heart metabolism and function: role of mitochondrial fatty acid transfer.
Montessuit C., Papageorgiou I., Tardy-Cantalupi I., Rosenblatt-Velin N., Lerch R., 2000. Journal of Applied Physiology, 89 (1) pp. 111-119. Peer-reviewed.
 
Transformed and nontransformed human T lymphocytes migrate to skin in a chimeric human skin/SCID mouse model.
Rosenblatt-Velin N., Arrighi J.F., Dietrich P.Y., Schnuriger V., Masouyé I., Hauser C., 1997. Journal of Investigative Dermatology, 109 (6) pp. 744-750. Peer-reviewed.
 
Development of grafted gld cells in athymic and euthymic recipients
Rosenblatt N., Hartmann K. U., Loor F., 1995/04. Immunology, 84 (4) pp. 562-70.
 
Interactions of B6 wild and B6 gld cells engrafted within athymic nude beige recipients
Rosenblatt N., Hartmann K. U., Loor F., 1995. Autoimmunity, 20 (1) pp. 9-18.
 
The Yaa gene-dependent B-cell deficiency worsens the generalized lymphadenopathy and autoimmunity of C57BL/6-gld male mice
Rosenblatt N., Hartmann K. U., Loor F., 1994/11. Immunology, 83 (3) pp. 476-83.
 
The Yaa mutation induces the development of autoimmunity in mice heterozygous for the gld (generalized lymphadenopathy disease) mutation
Rosenblatt N., Hartmann K. U., Loor F., 1994/07. Cellular Immunology, 156 (2) pp. 519-28.
 
Adoptive transfer of the entire gld (generalized lymphoproliferative disease) syndrome in nude beige mice by a single gld thymocyte graft
Froidevaux S., Rosenblatt N., Loor F., 1992/08. Cellular Immunology, 143 (1) pp. 238-47.
 
Adoptive transfer of the generalized lymphoproliferative disease (gld) syndrome in nude beige mice
Froidevaux S., Rosenblatt N., Loor F., 1992/04. Immunology, 75 (4) pp. 693-9.
 
Adoptive transfer of the gld syndrome in double congenic nude lpr mice
Froidevaux S., Rosenblatt N., Loor F., 1992. Autoimmunity, 12 (2) pp. 107-15.
Partagez:
Unicentre - CH-1015 Lausanne
Suisse
Tél. +41 21 692 11 11
Fax. +41 21 692 26 15
Swiss University