Tatiana Petrova

Publications | Mémoires et thèses

La recherche avancée est accessible via Serval

Les publications peuvent être gérées en accédant à Serval via MyUnil


112 publications

2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1996 | 1995 | 1994 | 1993 |
Mechanisms and functions of intestinal vascular specialization.
Bernier-Latmani J., González-Loyola A., Petrova T.V., 2024/01/01. The Journal of experimental medicine, 221 (1) pp. e20222008. Peer-reviewed.
Mechanosensitive mTORC1 signaling maintains lymphatic valves.
Saygili Demir C., Sabine A., Gong M., Dormond O., Petrova T.V., 2023/06/05. The Journal of cell biology, 222 (6) pp. e202207049. Peer-reviewed.
Lessons of Vascular Specialization From Secondary Lymphoid Organ Lymphatic Endothelial Cells.
Arroz-Madeira S., Bekkhus T., Ulvmar M.H., Petrova T.V., 2023/04/28. Circulation research, 132 (9) pp. 1203-1225. Peer-reviewed.
Endothelial cell-derived oxysterol ablation attenuates experimental autoimmune encephalomyelitis.
Ruiz F., Peter B., Rebeaud J., Vigne S., Bressoud V., Roumain M., Wyss T., Yersin Y., Wagner I., Kreutzfeldt M. et al., 2023/03/06. EMBO reports, 24 (3) pp. e55328. Peer-reviewed.
c-MAF coordinates enterocyte zonation and nutrient uptake transcriptional programs.
González-Loyola A., Bernier-Latmani J., Roci I., Wyss T., Langer J., Durot S., Munoz O., Prat-Luri B., Delorenzi M., Lutolf M.P. et al., 2022/12/05. The Journal of experimental medicine, 219 (12) pp. e20212418. Peer-reviewed.
 
Small intestinal resident eosinophils maintain gut homeostasis following microbial colonization.
Ignacio A., Shah K., Bernier-Latmani J., Köller Y., Coakley G., Moyat M., Hamelin R., Armand F., Wong N.C., Ramay H. et al., 2022/07/12. Immunity, 55 (7) pp. 1250-1267.e12. Peer-reviewed.
ADAMTS18<sup>+</sup> villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels.
Bernier-Latmani J., Mauri C., Marcone R., Renevey F., Durot S., He L., Vanlandewijck M., Maclachlan C., Davanture S., Zamboni N. et al., 2022/07/09. Nature communications, 13 (1) p. 3983. Peer-reviewed.
IFN-γ-dependent tumor-antigen cross-presentation by lymphatic endothelial cells promotes their killing by T cells and inhibits metastasis.
Garnier L., Pick R., Montorfani J., Sun M., Brighouse D., Liaudet N., Kammertoens T., Blankenstein T., Page N., Bernier-Latamani J. et al., 2022/06/10. Science advances, 8 (23) pp. eabl5162. Peer-reviewed.
 
The C5a-C5aR1 complement axis is essential for neutrophil recruitment to draining lymph nodes via high endothelial venules in cutaneous leishmaniasis.
Prat-Luri B., Neal C., Passelli K., Ganga E., Amore J., Firmino-Cruz L., Petrova T.V., Müller A.J., Tacchini-Cottier F., 2022/05/03. Cell reports, 39 (5) p. 110777. Peer-reviewed.
Apelin-driven endothelial cell migration sustains intestinal progenitor cells and tumor growth.
Bernier-Latmani J., Cisarovsky C., Mahfoud S., Ragusa S., Dupanloup I., Barras D., Renevey F., Nassiri S., Anderle P., Squadrito M.L. et al., 2022/05. Nature cardiovascular research, 1 (5) pp. 476-490. Peer-reviewed.
Loss of vascular endothelial notch signaling promotes spontaneous formation of tertiary lymphoid structures.
Fleig S., Kapanadze T., Bernier-Latmani J., Lill J.K., Wyss T., Gamrekelashvili J., Kijas D., Liu B., Hüsing A.M., Bovay E. et al., 2022/04/19. Nature communications, 13 (1) p. 2022. Peer-reviewed.
Stem-cell-like T cells have a specific entry gate to the tumor.
Held W., Luther S.A., Petrova T.V., 2022/03/14. Cancer cell, 40 (3) pp. 243-245. Peer-reviewed.
 
Mechanosensitive ACKR4 scavenges CCR7 chemokines to facilitate T cell de-adhesion and passive transport by flow in inflamed afferent lymphatics.
Friess M.C., Kritikos I., Schineis P., Medina-Sanchez J.D., Gkountidi A.O., Vallone A., Sigmund E.C., Schwitter C., Vranova M., Matti C. et al., 2022/02/01. Cell reports, 38 (5) p. 110334. Peer-reviewed.
In and out: Leishmania metastasis by hijacking lymphatic system and migrating immune cells.
Jha B., Reverte M., Ronet C., Prevel F., Morgenthaler F.D., Desponds C., Lye L.F., Owens K.L., Scarpellino L., Dubey L.K. et al., 2022. Frontiers in cellular and infection microbiology, 12 p. 941860. Peer-reviewed.
Lef1 restricts ectopic crypt formation and tumor cell growth in intestinal adenomas.
Heino S., Fang S., Lähde M., Högström J., Nassiri S., Campbell A., Flanagan D., Raven A., Hodder M., Nasreddin N. et al., 2021/11/19. Science advances, 7 (47) pp. eabj0512. Peer-reviewed.
Palmdelphin Regulates Nuclear Resilience to Mechanical Stress in the Endothelium.
Sáinz-Jaspeado M., Smith R.O., Plunde O., Pawelzik S.C., Jin Y., Nordling S., Ding Y., Aspenström P., Hedlund M., Bastianello G. et al., 2021/11/16. Circulation, 144 (20) pp. 1629-1645. Peer-reviewed.
Soluble trivalent engagers redirect cytolytic T cell activity toward tumor endothelial marker 1.
Fierle J.K., Brioschi M., de Tiani M., Wetterwald L., Atsaves V., Abram-Saliba J., Petrova T.V., Coukos G., Dunn S.M., 2021/08/17. Cell reports. Medicine, 2 (8) p. 100362. Peer-reviewed.
FOXC2 controls adult lymphatic endothelial specialization, function, and gut lymphatic barrier preventing multiorgan failure.
González-Loyola A., Bovay E., Kim J., Lozano T.W., Sabine A., Renevey F., Arroz-Madeira S., Rapin A., Wypych T.P., Rota G. et al., 2021/07. Science advances, 7 (29) pp. eabf4335. Peer-reviewed.
 
Macrophage depletion induces edema through release of matrix-degrading proteases and proteoglycan deposition.
Bissinger S., Hage C., Wagner V., Maser I.P., Brand V., Schmittnaegel M., Jegg A.M., Cannarile M., Watson C., Klaman I. et al., 2021/06/16. Science translational medicine, 13 (598) pp. eabd4550. Peer-reviewed.
Transcription factor FOXP2 is a flow-induced regulator of collecting lymphatic vessels.
Hernández Vásquez M.N., Ulvmar M.H., González-Loyola A., Kritikos I., Sun Y., He L., Halin C., Petrova T.V., Mäkinen T., 2021/06/15. The EMBO journal, 40 (12) pp. e107192. Peer-reviewed.
 
Development and aging of the lymphatic vascular system.
González-Loyola A., Petrova T.V., 2021/02. Advanced drug delivery reviews, 169 pp. 63-78. Peer-reviewed.
 
The double life of TLR2.
Mahfoud S., Petrova T.V., 2021/01/19. Science signaling, 14 (666) pp. eabf4701. Peer-reviewed.
Optimized low-dose combinatorial drug treatment boosts selectivity and efficacy of colorectal carcinoma treatment.
Zoetemelk M., Ramzy G.M., Rausch M., Koessler T., van Beijnum J.R., Weiss A., Mieville V., Piersma S.R., de Haas R.R., Delucinge-Vivier C. et al., 2020/11. Molecular oncology, 14 (11) pp. 2894-2919. Peer-reviewed.
 
Biological functions of lymphatic vessels.
Petrova T.V., Koh G.Y., 2020/07/10. Science, 369 (6500). Peer-reviewed.
Shear stimulation of FOXC1 and FOXC2 differentially regulates cytoskeletal activity during lymphatic valve maturation.
Norden P.R., Sabine A., Wang Y., Demir C.S., Liu T., Petrova T.V., Kume T., 2020/06/08. eLife, 9 pp. e53814. Peer-reviewed.
 
Antiangiogenic immunotherapy suppresses desmoplastic and chemoresistant intestinal tumors in mice.
Ragusa S., Prat-Luri B., González-Loyola A., Nassiri S., Squadrito M.L., Guichard A., Cavin S., Gjorevski N., Barras D., Marra G. et al., 2020/03/02. The Journal of clinical investigation, 130 (3) pp. 1199-1216. Peer-reviewed.
 
Disrupting Myelin-Specific Th17 Cell Gut Homing Confers Protection in an Adoptive Transfer Experimental Autoimmune Encephalomyelitis.
Duc D., Vigne S., Bernier-Latmani J., Yersin Y., Ruiz F., Gaïa N., Leo S., Lazarevic V., Schrenzel J., Petrova T.V. et al., 2019/10/08. Cell reports, 29 (2) pp. 378-390.e4. Peer-reviewed.
Therapeutic Regeneration of Lymphatic and Immune Cell Functions upon Lympho-organoid Transplantation.
Lenti E., Bianchessi S., Proulx S.T., Palano M.T., Genovese L., Raccosta L., Spinelli A., Drago D., Andolfo A., Alfano M. et al., 2019/06/11. Stem cell reports, 12 (6) pp. 1260-1268. Peer-reviewed.
 
Expression of Prox1 in Medullary Thyroid Carcinoma Is Associated with Chromogranin A and Calcitonin Expression and with Ki67 Proliferative Index, but Not with Prognosis.
Saglietti C., La Rosa S., Sykiotis G.P., Letovanec I., Bulliard J.L., Piana S., Mermod M., Petrova T., Uccella S., Sessa F. et al., 2019/06. Endocrine pathology, 30 (2) pp. 138-145. Peer-reviewed.
 
Publisher Correction: Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle.
Cheng W.C., Tsui Y.C., Ragusa S., Koelzer V.H., Mina M., Franco F., Läubli H., Tschumi B., Speiser D., Romero P. et al., 2019/04..
The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance.
Vannini N., Campos V., Girotra M., Trachsel V., Rojas-Sutterlin S., Tratwal J., Ragusa S., Stefanidis E., Ryu D., Rainer P.Y. et al., 2019/03/07. Cell stem cell, 24 (3) pp. 405-418.e7. Peer-reviewed.
 
Prediction of Occult Lymph Node Metastasis in Head and Neck Cancer with CD31 Vessel Quantification.
Mermod M., Bongiovanni M., Petrova T., Goun E., Simon C., Tolstonog G., Monnier Y., 2019/02. Otolaryngology: head and neck surgery, 160 (2) pp. 277-283. Peer-reviewed.
 
Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle.
Cheng W.C., Tsui Y.C., Ragusa S., Koelzer V.H., Mina M., Franco F., Läubli H., Tschumi B., Speiser D., Romero P. et al., 2019/02. Nature immunology, 20 (2) pp. 206-217. Peer-reviewed.
Endothelial Calcineurin Signaling Restrains Metastatic Outgrowth by Regulating Bmp2.
Hendrikx S., Coso S., Prat-Luri B., Wetterwald L., Sabine A., Franco C.A., Nassiri S., Zangger N., Gerhardt H., Delorenzi M. et al., 2019/01/29. Cell reports, 26 (5) pp. 1227-1241.e6. Peer-reviewed.
 
Adrenomedullin Induces Cardiac Lymphangiogenesis After Myocardial Infarction and Regulates Cardiac Edema Via Connexin 43.
Trincot C.E., Xu W., Zhang H., Kulikauskas M.R., Caranasos T.G., Jensen B.C., Sabine A., Petrova T.V., Caron K.M., 2019/01/04. Circulation research, 124 (1) pp. 101-113. Peer-reviewed.
 
Tannins from Syzygium guineense suppress Wnt signaling and proliferation of Wnt-dependent tumors through a direct effect on secreted Wnts.
Koval A., Pieme C.A., Queiroz E.F., Ragusa S., Ahmed K., Blagodatski A., Wolfender J.L., Petrova T.V., Katanaev V.L., 2018/10/28. Cancer letters, 435 pp. 110-120. Peer-reviewed.
Consensus guidelines for the use and interpretation of angiogenesis assays.
Nowak-Sliwinska P., Alitalo K., Allen E., Anisimov A., Aplin A.C., Auerbach R., Augustin H.G., Bates D.O., van Beijnum J.R., Bender RHF et al., 2018/08. Angiogenesis, 21 (3) pp. 425-532. Peer-reviewed.
PROX1 is a transcriptional regulator of MMP14.
Gramolelli S., Cheng J., Martinez-Corral I., Vähä-Koskela M., Elbasani E., Kaivanto E., Rantanen V., Tuohinto K., Hautaniemi S., Bower M. et al., 2018/06/22. Scientific reports, 8 (1) p. 9531. Peer-reviewed.
 
Mouse model of postsurgical primary tumor recurrence and regional lymph node metastasis progression in HPV-related head and neck cancer.
Mermod M., Hiou-Feige A., Bovay E., Roh V., Sponarova J., Bongiovanni M., Vermeer D.W., Lee J.H., Petrova T.V., Rivals J.P. et al., 2018/06/15. International journal of cancer, 142 (12) pp. 2518-2528. Peer-reviewed.
Organ-specific lymphatic vasculature: From development to pathophysiology.
Petrova T.V., Koh G.Y., 2018/01/02. The Journal of experimental medicine, 215 (1) pp. 35-49. Peer-reviewed.
 
Characterization of Mouse Mesenteric Lymphatic Valve Structure and Function.
Sabine A., Davis M.J., Bovay E., Petrova T.V., 2018. Methods in molecular biology, 1846 pp. 97-129. Peer-reviewed.
Multiple roles of lymphatic vessels in peripheral lymph node development.
Bovay E., Sabine A., Prat-Luri B., Kim S., Son K., Willrodt A.H., Olsson C., Halin C., Kiefer F., Betsholtz C. et al., 2018. The Journal of Experimental Medicine, 215 (11) pp. 2760-2777. Peer-reviewed.
All TIEd up: mechanisms of Schlemm's canal maintenance.
Bernier-Latmani J., Petrova T.V., 2017/10/02. The Journal of clinical investigation, 127 (10) pp. 3594-3597. Peer-reviewed.
 
Intestinal lymphatic vasculature: structure, mechanisms and functions.
Bernier-Latmani J., Petrova T.V., 2017/09. Nature reviews. Gastroenterology & hepatology, 14 (9) pp. 510-526. Peer-reviewed.
 
Microenvironmental regulation of tumour angiogenesis.
De Palma M., Biziato D., Petrova T.V., 2017/08. Nature reviews. Cancer, 17 (8) pp. 457-474. Peer-reviewed.
Human venous valve disease caused by mutations in FOXC2 and GJC2.
Lyons O., Saha P., Seet C., Kuchta A., Arnold A., Grover S., Rashbrook V., Sabine A., Vizcay-Barrena G., Patel A. et al., 2017/07/19. The Journal of experimental medicine pp. 2437-2452 . Peer-reviewed.
 
Correlation between podoplanin expression and extracapsular spread in squamous cell carcinoma of the oral cavity using subjective immunoreactivity scores and semiquantitative image analysis.
Mermod M., Bongiovanni M., Petrova T.V., Dubikovskaya E.A., Simon C., Tolstonog G., Monnier Y., 2017/01. Head & neck, 39 (1) pp. 98-108. Peer-reviewed.
Cx47 fine-tunes the handling of serum lipids but is dispensable for lymphatic vascular function.
Meens M.J., Kutkut I., Rochemont V., Dubrot J., Kaladji F.R., Sabine A., Lyons O., Hendrikx S., Bernier-Latmani J., Kiefer F. et al., 2017. PloS one, 12 (7) pp. e0181476. Peer-reviewed.
 
Endothelial Cell Responses to Biomechanical Forces in Lymphatic Vessels.
Sabine A., Saygili Demir C., Petrova T.V., 2016/09/01. Antioxidants & redox signaling, 25 (7) pp. 451-465. Peer-reviewed.
 
Prediction of occult lymph node metastasis in squamous cell carcinoma of the oral cavity and the oropharynx using peritumoral Prospero homeobox protein 1 lymphatic nuclear quantification.
Mermod M., Bongiovanni M., Petrova T.V., Dubikovskaya E.A., Simon C., Tolstonog G., Monnier Y., 2016/09. Head & neck, 38 (9) pp. 1407-1415. Peer-reviewed.
Comparison between direct and reverse electroporation of cells in situ: a simulation study.
Towhidi L., Khodadadi D., Maimari N., Pedrigi R.M., Ip H., Kis Z., Kwak B.R., Petrova T.W., Delorenzi M., Krams R., 2016. Physiological Reports, 4 (6) pp. e12673. Peer-reviewed.
 
Dielectric elastomer actuator for mechanical loading of 2D cell cultures.
Poulin A., Saygili Demir C., Rosset S., Petrova T.V., Shea H., 2016. Lab On A Chip, 16 (19) pp. 3788-3794. Peer-reviewed.
High-resolution 3D analysis of mouse small-intestinal stroma.
Bernier-Latmani J., Petrova T.V., 2016. Nature Protocols, 11 (9) pp. 1617-1629. Peer-reviewed.
Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium.
Kerr B.A., West X.Z., Kim Y.W., Zhao Y., Tischenko M., Cull R.M., Phares T.W., Peng X.D., Bernier-Latmani J., Petrova T.V. et al., 2016. Nature Communications, 7 p. 10960. Peer-reviewed.
The transcription factor Prox1 is essential for satellite cell differentiation and muscle fibre-type regulation.
Kivelä R., Salmela I., Nguyen Y.H., Petrova T.V., Koistinen H.A., Wiener Z., Alitalo K., 2016. Nature Communications, 7 p. 13124. Peer-reviewed.
Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2.
Liebl J., Zhang S., Moser M., Agalarov Y., Demir C.S., Hager B., Bibb J.A., Adams R.H., Kiefer F., Miura N. et al., 2015. Nature Communications, 6 p. 7274. Peer-reviewed.
DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport.
Bernier-Latmani J., Cisarovsky C., Demir C.S., Bruand M., Jaquet M., Davanture S., Ragusa S., Siegert S., Dormond O., Benedito R. et al., 2015. Journal of Clinical Investigation, 2015 pp. 4572-4586. Peer-reviewed.
FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature.
Sabine A., Bovay E., Demir C.S., Kimura W., Jaquet M., Agalarov Y., Zangger N., Scallan J.P., Graber W., Gulpinar E. et al., 2015. Journal of Clinical Investigation, 125 (10) pp. 3861-3877. Peer-reviewed.
GATA2 is required for lymphatic vessel valve development and maintenance.
Kazenwadel J., Betterman K.L., Chong C.E., Stokes P.H., Lee Y.K., Secker G.A., Agalarov Y., Demir C.S., Lawrence D.M., Sutton D.L. et al., 2015. Journal of Clinical Investigation, 125 (8) pp. 2979-2994. Peer-reviewed.
 
Meet me in the middle: dual origins of dermal lymphatic vasculature in mammals
Bernier-Latmani J., Sabine A., Petrova T.V., 2015. Circulation Research, 116 (10) pp. 1630-1632. Peer-reviewed.
 
Shear stress-induced atherosclerotic plaque composition in ApoE(-/-) mice is modulated by connexin37
Pfenniger A., Meens M.J., Pedrigi R.M., Foglia B., Sutter E., Pelli G., Rochemont V., Petrova T.V., Krams R., Kwak B.R., 2015. Atherosclerosis, 243 (1) pp. 1-10. Peer-reviewed.
STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity.
Demaria O., De Gassart A., Coso S., Gestermann N., Di Domizio J., Flatz L., Gaide O., Michielin O., Hwu P., Petrova T.V. et al., 2015. Proceedings of the National Academy of Sciences of the United States of America, 112 (50) pp. 15408-15413.
Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions.
Zheng W., Nurmi H., Appak S., Sabine A., Bovay E., Korhonen E.A., Orsenigo F., Lohela M., D'Amico G., Holopainen T. et al., 2014. Genes and Development, 28 (14) pp. 1592-1603.
 
Connexins in lymphatic vessel physiology and disease.
Meens M.J., Sabine A., Petrova T.V., Kwak B.R., 2014. FEBS Letters, 588 (8) pp. 1271-1277.
 
Interplay of mechanotransduction, FOXC2, connexins, and calcineurin signaling in lymphatic valve formation.
Sabine A., Petrova T.V., 2014. Advances in Anatomy, Embryology, and Cell Biology, 214 pp. 67-80.
Pkd1 Regulates Lymphatic Vascular Morphogenesis during Development.
Coxam B., Sabine A., Bower N.I., Smith K.A., Pichol-Thievend C., Skoczylas R., Astin J.W., Frampton E., Jaquet M., Crosier P.S. et al., 2014. Cell Reports, 7 (3) pp. 623-633.
 
Pressing the right buttons: signaling in lymphangiogenesis.
Coso S., Bovay E., Petrova T.V., 2014. Blood, 123 (17) pp. 2614-2624.
PROX1 Promotes Metabolic Adaptation and Fuels Outgrowth of Wnt(high) Metastatic Colon Cancer Cells.
Ragusa S., Cheng J., Ivanov K.I., Zangger N., Ceteci F., Bernier-Latmani J., Milatos S., Joseph J.M., Tercier S., Bouzourene H. et al., 2014. Cell Reports, 8 (6) pp. 1957-1973. Peer-reviewed.
 
Phosphorylation regulates FOXC2-mediated transcription in lymphatic endothelial cells.
Ivanov K.I., Agalarov Y., Valmu L., Samuilova O., Liebl J., Houhou N., Maby-El Hajjami H., Norrmén C., Jaquet M., Miura N. et al., 2013. Molecular and Cellular Biology, 33 (19) pp. 3749-3761.
An unexpected role of semaphorin3a-neuropilin-1 signaling in lymphatic vessel maturation and valve formation.
Jurisic G., Maby-El Hajjami H., Karaman S., Ochsenbein A.M., Alitalo A., Siddiqui S.S., Ochoa Pereira C., Petrova T.V., Detmar M., 2012. Circulation Research, 111 (4) pp. 426-436. Peer-reviewed.
 
Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation.
Sabine A., Agalarov Y., Maby-El Hajjami H., Jaquet M., Hägerling R., Pollmann C., Bebber D., Pfenniger A., Miura N., Dormond O. et al., 2012. Developmental Cell, 22 (2) pp. 430-445.
 
Biological basis of therapeutic lymphangiogenesis.
Norrmén C., Tammela T., Petrova T.V., Alitalo K., 2011. Circulation, 123 (12) pp. 1335-1351.
 
Expression and prognostic value of transcription factor PROX1 in colorectal cancer.
Skog M., Bono P., Lundin M., Lundin J., Louhimo J., Linder N., Petrova T.V., Andersson L.C., Joensuu H., Alitalo K. et al., 2011. British Journal of Cancer, 105 (9) pp. 1346-1351.
 
Fifteen years of molecular lymphangiogenesis - an interview with Kari Alitalo by Tatiana Petrova.
Alitalo K., 2011. International Journal of Developmental Biology, 55 (4-5) pp. 389-394.
Lymphatic vascular morphogenesis in development, physiology, and disease.
Schulte-Merker S., Sabine A., Petrova T.V., 2011. Journal of Cell Biology, 193 (4) pp. 607-618.
Embryonic vascular endothelial cells are malleable to reprogramming via Prox1 to a lymphatic gene signature.
Kim H., Nguyen V.P., Petrova T.V., Cruz M., Alitalo K., Dumont D.J., 2010. BMC Developmental Biology, 10 p. 72.
 
Liprin (beta)1 is highly expressed in lymphatic vasculature and is important for lymphatic vessel integrity.
Norrmén C., Vandevelde W., Ny A., Saharinen P., Gentile M., Haraldsen G., Puolakkainen P., Lukanidin E., Dewerchin M., Alitalo K. et al., 2010. Blood, 115 (4) pp. 906-909.
 
15-hydroxyprostaglandin dehydrogenase is down-regulated in gastric cancer.
Thiel A., Ganesan A., Mrena J., Junnila S., Nykänen A., Hemmes A., Tai H.H., Monni O., Kokkola A., Haglund C. et al., 2009. Clinical Cancer Research, 15 (14) pp. 4572-4580.
FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1.
Norrmén C., Ivanov K.I., Cheng J., Zangger N., Delorenzi M., Jaquet M., Miura N., Puolakkainen P., Horsley V., Hu J. et al., 2009. Journal of Cell Biology, 185 (3) pp. 439-457.
Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85alpha, p55alpha, and p50alpha.
Mouta-Bellum C., Kirov A., Miceli-Libby L., Mancini M.L., Petrova T.V., Liaw L., Prudovsky I., Thorpe P.E., Miura N., Cantley L.C. et al., 2009. Developmental Dynamics, 238 (10) pp. 2670-2679. Peer-reviewed.
Developmental and pathological lymphangiogenesis: from models to human disease.
Maby-El Hajjami H., Petrova T.V., 2008. Histochemistry and Cell Biology, 130 (6) pp. 1063-1078. Peer-reviewed.
 
Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia.
Kirjavainen A., Sulg M., Heyd F., Alitalo K., Ylä-Herttuala S., Möröy T., Petrova T.V., Pirvola U., 2008. Developmental Biology, 322 (1) pp. 33-45.
 
Transcription factor PROX1 induces colon cancer progression by promoting the transition from benign to highly dysplastic phenotype.
Petrova T.V., Nykänen A., Norrmén C., Ivanov K.I., Andersson L.C., Haglund C., Puolakkainen P., Wempe F., von Melchner H., Gradwohl G. et al., 2008. Cancer Cell, 13 (5) pp. 407-419. Peer-reviewed.
 
VEGFR-3 expression is restricted to blood and lymphatic vessels in solid tumors.
Petrova T.V., Bono P., Holnthoner W., Chesnes J., Pytowski B., Sihto H., Laakkonen P., Heikkilä P., Joensuu H., Alitalo K., 2008. Cancer Cell, 13 (6) pp. 554-556. Peer-reviewed.
 
Molecular mechanisms of lymphatic vascular development.
Mäkinen T., Norrmén C., Petrova T.V., 2007. Cellular and Molecular Life Sciences, 64 (15) pp. 1915-1929.
 
Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation.
Tammela T., Saaristo A., Holopainen T., Lyytikkä J., Kotronen A., Pitkonen M., Abo-Ramadan U., Ylä-Herttuala S., Petrova T.V., Alitalo K., 2007. Nature Medicine, 13 (12) pp. 1458-1466.
 
Early lymph vessel development from embryonic stem cells.
Kreuger J., Nilsson I., Kerjaschki D., Petrova T., Alitalo K., Claesson-Welsh L., 2006. Arteriosclerosis, Thrombosis, and Vascular Biology, 26 (5) pp. 1073-1078.
 
Large-scale identification of genes implicated in kidney glomerulus development and function.
Takemoto M., He L., Norlin J., Patrakka J., Xiao Z., Petrova T., Bondjers C., Asp J., Wallgard E., Sun Y. et al., 2006. EMBO Journal, 25 (5) pp. 1160-1174.
 
Lymphangiogenesis in development and human disease.
Alitalo K., Tammela T., Petrova T.V., 2005. Nature, 438 (7070) pp. 946-953.
 
Molecular lymphangiogenesis: new players.
Tammela T., Petrova T.V., Alitalo K., 2005. Trends in Cell Biology, 15 (8) pp. 434-441.
 
Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation.
Baluk P., Tammela T., Ator E., Lyubynska N., Achen M.G., Hicklin D.J., Jeltsch M., Petrova T.V., Pytowski B., Stacker S.A. et al., 2005. Journal of Clinical Investigation, 115 (2) pp. 247-257.
 
Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis.
Petrova T.V., Karpanen T., Norrmén C., Mellor R., Tamakoshi T., Finegold D., Ferrell R., Kerjaschki D., Mortimer P., Ylä-Herttuala S. et al., 2004. Nature Medicine, 10 (9) pp. 974-981.
 
Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates.
Kerjaschki D., Regele H.M., Moosberger I., Nagy-Bojarski K., Watschinger B., Soleiman A., Birner P., Krieger S., Hovorka A., Silberhumer G. et al., 2004. Journal of the American Society of Nephrology, 15 (3) pp. 603-612.
 
Molecular regulation of lymphangiogenesis.
Saharinen P., Petrova T.V., 2004. Annals of the New York Academy of Sciences, 1014 pp. 76-87.
 
Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins.
Karkkainen M.J., Haiko P., Sainio K., Partanen J., Taipale J., Petrova T.V., Jeltsch M., Jackson D.G., Talikka M., Rauvala H. et al., 2004. Nature Immunology, 5 (1) pp. 74-80.
 
Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and function.
Veikkola T., Lohela M., Ikenberg K., Mäkinen T., Korff T., Saaristo A., Petrova T., Jeltsch M., Augustin H.G., Alitalo K., 2003. FASEB Journal, 17 (14) pp. 2006-2013.
 
A fluorescent Tie1 reporter allows monitoring of vascular development and endothelial cell isolation from transgenic mouse embryos.
Iljin K., Petrova T.V., Veikkola T., Kumar V., Poutanen M., Alitalo K., 2002. FASEB Journal, 16 (13) pp. 1764-1774.
 
Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor.
Petrova T.V., Mäkinen T., Mäkelä T.P., Saarela J., Virtanen I., Ferrell R.E., Finegold D.N., Kerjaschki D., Ylä-Herttuala S., Alitalo K., 2002. EMBO Journal, 21 (17) pp. 4593-4599.
 
Folding units in calcium vector protein of amphioxus: Structural and functional properties of its amino- and carboxy-terminal halves.
Baladi S., Tsvetkov P.O., Petrova T.V., Takagi T., Sakamoto H., Lobachov V.M., Makarov A.A., Cox J.A., 2001. Protein Science, 10 (4) pp. 771-778.
 
Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice.
Veikkola T., Jussila L., Makinen T., Karpanen T., Jeltsch M., Petrova T.V., Kubo H., Thurston G., McDonald D.M., Achen M.G. et al., 2001. EMBO Journal, 20 (6) pp. 1223-1231.
 
Cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-prostaglandin J(2) acts as a general inhibitor of inflammatory responses in activated BV-2 microglial cells.
Koppal T., Petrova T.V., Van Eldik L.J., 2000. Brain Research, 867 (1-2) pp. 115-121.
 
Modulation of glial activation by astrocyte-derived protein S100B: differential responses of astrocyte and microglial cultures.
Petrova T.V., Hu J., Van Eldik L.J., 2000. Brain Research, 853 (1) pp. 74-80.
 
Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis.
Karkkainen M.J., Petrova T.V., 2000. Oncogene, 19 (49) pp. 5598-5605.
 
Cyclopentenone prostaglandins suppress activation of microglia: down-regulation of inducible nitric-oxide synthase by 15-deoxy-Delta12,14-prostaglandin J2.
Petrova T.V., Akama K.T., Van Eldik L.J., 1999. Proceedings of the National Academy of Sciences of the United States of America, 96 (8) pp. 4668-4673.
 
Screening in a cell-based assay for inhibitors of microglial nitric oxide production reveals calmodulin-regulated protein kinases as potential drug discovery targets.
Mirzoeva S., Koppal T., Petrova T.V., Lukas T.J., Watterson D.M., Van Eldik L.J., 1999. Brain Research, 844 (1-2) pp. 126-134.
 
Selective modulation of BV-2 microglial activation by prostaglandin E(2). Differential effects on endotoxin-stimulated cytokine induction.
Petrova T.V., Akama K.T., Van Eldik L.J., 1999. Journal of Biological Chemistry, 274 (40) pp. 28823-28827.
 
Signaling via vascular endothelial growth factor receptors.
Petrova T.V., Makinen T., Alitalo K., 1999. Experimental Cell Research, 253 (1) pp. 117-130.
 
Nereis sarcoplasmic Ca2+-binding protein has a highly unstructured apo state which is switched to the native state upon binding of the first Ca2+ ion.
Prêcheur B., Cox J.A., Petrova T., Mispelter J., Craescu C.T., 1996. FEBS Letters, 395 (1) pp. 89-94.
 
Phosphorylation of the IQ domain regulates the interaction between Ca2+-vector protein and its target in Amphioxus.
Petrova T.V., Takagi T., Cox J.A., 1996. Journal of Biological Chemistry, 271 (43) pp. 26646-26652.
 
Thermodynamic and molecular properties of the interaction between amphioxus calcium vector protein and its 26 kDa target.
Petrova T.V., Comte M., Takagi T., Cox J.A., 1995. Biochemistry, 34 (1) pp. 312-318.
 
Characterization and primary structure of amphioxus troponin C.
Takagi T., Petrova T., Comte M., Kuster T., Heizmann C.W., Cox J.A., 1994. European Journal of Biochemistry, 221 (1) pp. 537-546.
 
Cation binding and conformation of tryptic fragments of Nereis sarcoplasmic calcium-binding protein: calcium-induced homo- and heterodimerization.
Durussel I., Luan-Rilliet Y., Petrova T., Takagi T., Cox J.A., 1993. Biochemistry, 32 (9) pp. 2394-2400.
Partagez:
Unicentre - CH-1015 Lausanne
Suisse
Tél. +41 21 692 11 11
Swiss University