Jan-Willem Veening

Publications | Phd and Masters theses

Advanced search is available through Serval

Publications can be managed by accessing Serval via MyUnil


111 publications

2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 |
Klebsiella pneumoniae peptide hijacks a Streptococcus pneumoniae permease to subvert pneumococcal growth and colonization.
Lux J., Portmann H., Sánchez García L., Erhardt M., Holivololona L., Laloli L., Licheri M.F., Gallay C., Hoepner R., Croucher N.J. et al., 2024/04/08. Communications biology, 7 (1) p. 425. Peer-reviewed.
 
A conserved antigen induces respiratory Th17-mediated broad serotype protection against pneumococcal superinfection.
Liu X., Van Maele L., Matarazzo L., Soulard D., Alves Duarte da Silva V., de Bakker V., Dénéréaz J., Bock F.P., Taschner M., Ou J. et al., 2024/03/13. Cell host & microbe, 32 (3) pp. 304-314.e8. Peer-reviewed.
 
Klebsiella pneumoniae OmpR facilitates lung infection through transcriptional regulation of key virulence factors.
Janssen A.B., de Bakker V., Aprianto R., Trebosc V., Kemmer C., Pieren M., Veening J-W, 2024/01/11. Microbiology spectrum, 12 (1) pp. e0396623. Peer-reviewed.
 
BactEXTRACT: an R Shiny app to quickly extract, plot and analyse bacterial growth and gene expression data.
Dénéréaz J., Veening J.W., 2024. Access microbiology, 6 (1). Peer-reviewed.
 
Revitalizing antibiotic discovery and development through in vitro modelling of in-patient conditions.
Sollier J., Basler M., Broz P., Dittrich P.S., Drescher K., Egli A., Harms A., Hierlemann A., Hiller S., King C.G. et al., 2024/01. Nature microbiology, 9 (1) pp. 1-3. Peer-reviewed.
The ClpX chaperone and a hypermorphic FtsA variant with impaired self-interaction are mutually compensatory for coordinating Staphylococcus aureus cell division.
Henriksen C., Baek K.T., Wacnik K., Gallay C., Veening J.W., Foster S.J., Frees D., 2024/01. Molecular microbiology, 121 (1) pp. 98-115. Peer-reviewed.
 
Liver macrophages and sinusoidal endothelial cells execute vaccine-elicited capture of invasive bacteria.
Wang J., An H., Ding M., Liu Y., Wang S., Jin Q., Wu Q., Dong H., Guo Q., Tian X. et al., 2023/12/20. Science translational medicine, 15 (727) pp. eade0054. Peer-reviewed.
Synthetic genetic oscillators demonstrate the functional importance of phenotypic variation in pneumococcal-host interactions.
Rueff A.S., van Raaphorst R., Aggarwal S.D., Santos-Moreno J., Laloux G., Schaerli Y., Weiser J.N., Veening J.W., 2023/11/17. Nature communications, 14 (1) p. 7454. Peer-reviewed.
Gaps in the wall: understanding cell wall biology to tackle amoxicillin resistance in Streptococcus pneumoniae.
Gibson P.S., Veening J.W., 2023/01/11. Current opinion in microbiology, 72 p. 102261. Peer-reviewed.
Competence remodels the pneumococcal cell wall exposing key surface virulence factors that mediate increased host adherence.
Minhas V., Domenech A., Synefiaridou D., Straume D., Brendel M., Cebrero G., Liu X., Costa C., Baldry M., Sirard J.C. et al., 2023/01. PLoS biology, 21 (1) pp. e3001990. Peer-reviewed.
A Genome-Wide CRISPR Interference Screen Reveals an StkP-Mediated Connection between Cell Wall Integrity and Competence in Streptococcus salivarius.
Knoops A., Waegemans A., Lamontagne M., Decat B., Mignolet J., Veening J.W., Hols P., 2022/12/20. mSystems, 7 (6) pp. e0073522. Peer-reviewed.
Pneumolysin promotes host cell necroptosis and bacterial competence during pneumococcal meningitis as shown by whole-animal dual RNA-seq.
Jim K.K., Aprianto R., Koning R., Domenech A., Kurushima J., van de Beek D., Vandenbroucke-Grauls CMJE, Bitter W., Veening J.W., 2022/12/20. Cell reports, 41 (12) p. 111851. Peer-reviewed.
The acquisition of clinically relevant amoxicillin resistance in Streptococcus pneumoniae requires ordered horizontal gene transfer of four loci.
Gibson P.S., Bexkens E., Zuber S., Cowley L.A., Veening J.W., 2022/07. PLoS pathogens, 18 (7) pp. e1010727. Peer-reviewed.
Amoxicillin-resistant Streptococcus pneumoniae can be resensitized by targeting the mevalonate pathway as indicated by sCRilecs-seq.
Dewachter L., Dénéréaz J., Liu X., de Bakker V., Costa C., Baldry M., Sirard J.C., Veening J.W., 2022/06/24. eLife, 11 pp. e75607. Peer-reviewed.
Functional vulnerability of liver macrophages to capsules defines virulence of blood-borne bacteria.
An H., Qian C., Huang Y., Li J., Tian X., Feng J., Hu J., Fang Y., Jiao F., Zeng Y. et al., 2022/04/04. The Journal of experimental medicine, 219 (4) pp. e20212032. Peer-reviewed.
Mechanistic basis of choline import involved in teichoic acids and lipopolysaccharide modification.
Bärland N., Rueff A.S., Cebrero G., Hutter CAJ, Seeger M.A., Veening J.W., Perez C., 2022/03/04. Science advances, 8 (9) pp. eabm1122. Peer-reviewed.
 
CRISPRi-seq for genome-wide fitness quantification in bacteria.
de Bakker V., Liu X., Bravo A.M., Veening J.W., 2022/02. Nature protocols, 17 (2) pp. 252-281. Peer-reviewed.
 
Switching off: The phenotypic transition to the uninduced state of the lactose uptake pathway.
Bhogale P.M., Sorg R.A., Veening J.W., Berg J., 2022/01/18. Biophysical journal, 121 (2) pp. 183-192. Peer-reviewed.
2FAST2Q: a general-purpose sequence search and counting program for FASTQ files.
Bravo A.M., Typas A., Veening J.W., 2022. PeerJ, 10 pp. e14041. Peer-reviewed.
CcrZ is a pneumococcal spatiotemporal cell cycle regulator that interacts with FtsZ and controls DNA replication by modulating the activity of DnaA.
Gallay C., Sanselicio S., Anderson M.E., Soh Y.M., Liu X., Stamsås G.A., Pelliciari S., van Raaphorst R., Dénéréaz J., Kjos M. et al., 2021/09. Nature microbiology, 6 (9) pp. 1175-1187. Peer-reviewed.
Harnessing CRISPR-Cas9 for Genome Editing in Streptococcus pneumoniae D39V.
Synefiaridou D., Veening J.W., 2021/02/26. Applied and environmental microbiology, 87 (6) pp. e02762-20. Peer-reviewed.
Exploration of Bacterial Bottlenecks and Streptococcus pneumoniae Pathogenesis by CRISPRi-Seq.
Liu X., Kimmey J.M., Matarazzo L., de Bakker V., Van Maele L., Sirard J.C., Nizet V., Veening J.W., 2021/01/13. Cell host & microbe, 29 (1) pp. 107-120.e6. Peer-reviewed.
Prevalence of phase variable epigenetic invertons among host-associated bacteria.
Huang X., Wang J., Li J., Liu Y., Liu X., Li Z., Kurniyati K., Deng Y., Wang G., Ralph J.D. et al., 2020/11/18. Nucleic acids research, 48 (20) pp. 11468-11485. Peer-reviewed.
Synthetic gene-regulatory networks in the opportunistic human pathogen Streptococcus pneumoniae.
Sorg R.A., Gallay C., Van Maele L., Sirard J.C., Veening J.W., 2020/11/03. Proceedings of the National Academy of Sciences of the United States of America, 117 (44) pp. 27608-27619. Peer-reviewed.
Unbiased homeologous recombination during pneumococcal transformation allows for multiple chromosomal integration events.
Kurushima J., Campo N., van Raaphorst R., Cerckel G., Polard P., Veening J.W., 2020/09/23. eLife, 9 pp. e58771. Peer-reviewed.
In vivo dual RNA-seq reveals that neutrophil recruitment underlies differential tissue tropism of Streptococcus pneumoniae.
Minhas V., Aprianto R., McAllister L.J., Wang H., David S.C., McLean K.T., Comerford I., McColl S.R., Paton J.C., Veening J.W. et al., 2020/06/05. Communications biology, 3 (1) p. 293. Peer-reviewed.
 
Structure of a proton-dependent lipid transporter involved in lipoteichoic acids biosynthesis
Zhang Bing, Liu Xue, Lambert Elisabeth, Mas Guillaume, Hiller Sebastian, Veening Jan-Willem, Perez Camilo, 2020/06. Nature Structural & Molecular Biology, 27 (6) pp. 561-569. Peer-reviewed.
 
Proton Motive Force Disruptors Block Bacterial Competence and Horizontal Gene Transfer.
Domenech A., Brochado A.R., Sender V., Hentrich K., Henriques-Normark B., Typas A., Veening J.W., 2020/04/08. Cell host & microbe, 27 (4) pp. 544-555.e3. Peer-reviewed.
BactMAP: An R package for integrating, analyzing and visualizing bacterial microscopy data.
van Raaphorst R., Kjos M., Veening J.W., 2020/01. Molecular microbiology, 113 (1) pp. 297-308. Peer-reviewed.
 
Self-organization of parS centromeres by the ParB CTP hydrolase.
Soh Y.M., Davidson I.F., Zamuner S., Basquin J., Bock F.P., Taschner M., Veening J.W., De Los Rios P., Peters J.M., Gruber S., 2019/11/29. Science, 366 (6469) pp. 1129-1133. Peer-reviewed.
RocS drives chromosome segregation and nucleoid protection in Streptococcus pneumoniae.
Mercy C., Ducret A., Slager J., Lavergne J.P., Freton C., Nagarajan S.N., Garcia P.S., Noirot-Gros M.F., Dubarry N., Nourikyan J. et al., 2019/10. Nature microbiology, 4 (10) pp. 1661-1670. Peer-reviewed.
SosA inhibits cell division in Staphylococcus aureus in response to DNA damage.
Bojer M.S., Wacnik K., Kjelgaard P., Gallay C., Bottomley A.L., Cohn M.T., Lindahl G., Frees D., Veening J.W., Foster S.J. et al., 2019/10. Molecular microbiology, 112 (4) pp. 1116-1130. Peer-reviewed.
The ClpX chaperone controls autolytic splitting of Staphylococcus aureus daughter cells, but is bypassed by β-lactam antibiotics or inhibitors of WTA biosynthesis.
Jensen C., Bæk K.T., Gallay C., Thalsø-Madsen I., Xu L., Jousselin A., Ruiz Torrubia F., Paulander W., Pereira A.R., Veening J.W. et al., 2019/09. PLoS pathogens, 15 (9) pp. e1008044. Peer-reviewed.
Refining the Pneumococcal Competence Regulon by RNA Sequencing.
Slager J., Aprianto R., Veening J.W., 2019/07/01. Journal of bacteriology, 201 (13). Peer-reviewed.
Three New Integration Vectors and Fluorescent Proteins for Use in the Opportunistic Human Pathogen Streptococcus pneumoniae.
Keller L.E., Rueff A.S., Kurushima J., Veening J.W., 2019/05/22. Genes, 10 (5) p. 394. Peer-reviewed.
 
Assessing evolutionary risks of resistance for new antimicrobial therapies.
Brockhurst M.A., Harrison F., Veening J.W., Harrison E., Blackwell G., Iqbal Z., Maclean C., 2019/04. Nature ecology & evolution, 3 (4) pp. 515-517. Peer-reviewed.
Antibiotic-Induced Cell Chaining Triggers Pneumococcal Competence by Reshaping Quorum Sensing to Autocrine-Like Signaling.
Domenech A., Slager J., Veening J.W., 2018/11/27. Cell reports, 25 (9) pp. 2390-2400.e3. Peer-reviewed.
Deep genome annotation of the opportunistic human pathogen Streptococcus pneumoniae D39.
Slager J., Aprianto R., Veening J.W., 2018/11/02. Nucleic acids research, 46 (19) pp. 9971-9989. Peer-reviewed.
High-resolution analysis of the pneumococcal transcriptome under a wide range of infection-relevant conditions.
Aprianto R., Slager J., Holsappel S., Veening J.W., 2018/11/02. Nucleic acids research, 46 (19) pp. 9990-10006. Peer-reviewed.
Eavesdropping and crosstalk between secreted quorum sensing peptide signals that regulate bacteriocin production in Streptococcus pneumoniae.
Miller E.L., Kjos M., Abrudan M.I., Roberts I.S., Veening J.W., Rozen D.E., 2018/10. The ISME journal, 12 (10) pp. 2363-2375. Peer-reviewed.
Function of BriC peptide in the pneumococcal competence and virulence portfolio.
Aggarwal S.D., Eutsey R., West-Roberts J., Domenech A., Xu W., Abdullah I.T., Mitchell A.P., Veening J.W., Yesilkaya H., Hiller N.L., 2018/10. PLoS pathogens, 14 (10) pp. e1007328. Peer-reviewed.
 
CozEa and CozEb play overlapping and essential roles in controlling cell division in Staphylococcus aureus.
Stamsås G.A., Myrbråten I.S., Straume D., Salehian Z., Veening J.W., Håvarstein L.S., Kjos M., 2018/09. Molecular microbiology, 109 (5) pp. 615-632. Peer-reviewed.
 
Editorial overview: Bacterial cell regulation: from genes to complex environments.
Veening J.W., Tamayo R., 2018/04. Current opinion in microbiology, 42 pp. 110-114. Peer-reviewed.
Quorum sensing integrates environmental cues, cell density and cell history to control bacterial competence.
Moreno-Gámez S., Sorg R.A., Domenech A., Kjos M., Weissing F.J., van Doorn G.S., Veening J.W., 2017/10/11. Nature communications, 8 (1) p. 854. Peer-reviewed.
Chromosome segregation drives division site selection in Streptococcus pneumoniae.
van Raaphorst R., Kjos M., Veening J.W., 2017/07/18. Proceedings of the National Academy of Sciences of the United States of America, 114 (29) pp. E5959-E5968. Peer-reviewed.
 
Transcriptional Repressor PtvR Regulates Phenotypic Tolerance to Vancomycin in Streptococcus pneumoniae.
Liu X., Li J.W., Feng Z., Luo Y., Veening J.W., Zhang J.R., 2017/07/15. Journal of bacteriology, 199 (14) pp. UNSP e00054-17. Peer-reviewed.
High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae.
Liu X., Gallay C., Kjos M., Domenech A., Slager J., van Kessel S.P., Knoops K., Sorg R.A., Zhang J.R., Veening J.W., 2017/05/10. Molecular systems biology, 13 (5) p. 931. Peer-reviewed.
 
Neutrophilic NLRP3 inflammasome-dependent IL-1β secretion regulates the γδT17 cell response in respiratory bacterial infections
M Hassane, D Demon, D Soulard, J Fontaine, L E Keller, E C Patin, R Porte, I Prinz, B Ryffel, A Kadioglu et al., 2017/01/04. Mucosal Immunology.
 
Bicyclic enol cyclocarbamates inhibit penicillin-binding proteins
Dockerty Paul, Edens Jerre, Tol Menno, Angeles Danae, Domenech Arnau, Liu Yin, Hirsch Anna, Veening Jan-Willem, Scheffers Dirk-Jan, Witte Martin, 2017. Organic & Biomolecular Chemistry.
 
Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria.
Veening J.W., Blokesch M., 2017. Nature Reviews. Microbiology, 15 (10) pp. 621-629. Peer-reviewed.
 
Pentapeptide-rich peptidoglycan at the Bacillus subtilis cell-division site.
Morales Angeles D., Liu Y., Hartman A.M., Borisova M., de Sousa Borges A., de Kok N., Beilharz K., Veening J.W., Mayer C., Hirsch A.K. et al., 2017. Molecular Microbiology, 104 (2) pp. 319-333. Peer-reviewed.
Collective Resistance in Microbial Communities by Intracellular Antibiotic Deactivation.
Sorg R.A., Lin L., van Doorn G.S., Sorg M., Olson J., Nizet V., Veening J.W., 2016/12. PLoS biology, 14 (12) pp. e2000631. Peer-reviewed.
 
A putative amino acid transporter determines sensitivity to the two-peptide bacteriocin plantaricin JK.
Oppegård C., Kjos M., Veening J.W., Nissen-Meyer J., Kristensen T., 2016. Microbiologyopen, 5 (4) pp. 700-708.
Expression of Streptococcus pneumoniae Bacteriocins Is Induced by Antibiotics via Regulatory Interplay with the Competence System.
Kjos M., Miller E., Slager J., Lake F.B., Gericke O., Roberts I.S., Rozen D.E., Veening J.W., 2016. PLoS Pathogens, 12 (2) pp. e1005422.
 
Hard-Wired Control of Bacterial Processes by Chromosomal Gene Location.
Slager J., Veening J.W., 2016. Trends In Microbiology, 24 (10) pp. 788-800.
 
Highly conserved nucleotide phosphatase essential for membrane lipid homeostasis in Streptococcus pneumoniae.
Kuipers K., Gallay C., Martínek V., Rohde M., Martínková M., van der Beek S.L., Jong W.S., Venselaar H., Zomer A., Bootsma H. et al., 2016. Molecular Microbiology, 101 (1) pp. 12-26.
 
Infection of zebrafish embryos with live fluorescent Streptococcus pneumoniae as a real-time pneumococcal meningitis model.
Jim K.K., Engelen-Lee J., van der Sar A.M., Bitter W., Brouwer M.C., van der Ende A., Veening J.W., van de Beek D., Vandenbroucke-Grauls C.M., 2016. Journal of Neuroinflammation, 13 (1) p. 188.
Time-resolved dual RNA-seq reveals extensive rewiring of lung epithelial and pneumococcal transcriptomes during early infection.
Aprianto R., Slager J., Holsappel S., Veening J.W., 2016. Genome Biology, 17 (1) p. 198.
 
The ParB-parSChromosome Segregation System Modulates Competence Development inStreptococcus pneumoniae
Laetitia Attaiech, Anita Minnen, Morten Kjos, Stephan Gruber, Jan-Willem Veening, 2015/06. mBio.
Autophosphorylation of the Bacterial Tyrosine-Kinase CpsD Connects Capsule Synthesis with the Cell Cycle in Streptococcus pneumoniae.
Nourikyan J., Kjos M., Mercy C., Cluzel C., Morlot C., Noirot-Gros M.F., Guiral S., Lavergne J.P., Veening J.W., Grangeasse C., 2015. PLoS Genetics, 11 (9) pp. e1005518.
 
Bright fluorescent Streptococcus pneumoniae for live-cell imaging of host-pathogen interactions.
Kjos M., Aprianto R., Fernandes V.E., Andrew P.W., van Strijp J.A., Nijland R., Veening J.W., 2015. Journal of Bacteriology, 197 (5) pp. 807-818.
 
Gene expression platform for synthetic biology in the human pathogen Streptococcus pneumoniae.
Sorg R.A., Kuipers O.P., Veening J.W., 2015. ACS Synthetic Biology, 4 (3) pp. 228-239.
Host glycan sugar-specific pathways in Streptococcus pneumoniae: galactose as a key sugar in colonisation and infection [corrected].
Paixão L., Oliveira J., Veríssimo A., Vinga S., Lourenço E.C., Ventura M.R., Kjos M., Veening J.W., Fernandes V.E., Andrew P.W. et al., 2015. PLoS One, 10 (3) pp. e0121042.
 
Microscale insights into pneumococcal antibiotic mutant selection windows.
Sorg R.A., Veening J.W., 2015. Nature Communications, 6 p. 8773.
 
Red Fluorescent Proteins for Gene Expression and Protein Localization Studies in Streptococcus pneumoniae and Efficient Transformation with DNA Assembled via the Gibson Assembly Method.
Beilharz K., van Raaphorst R., Kjos M., Veening J.W., 2015. Applied and Environmental Microbiology, 81 (20) pp. 7244-7252.
Single cell FRET analysis for the identification of optimal FRET-pairs in Bacillus subtilis using a prototype MEM-FLIM system.
Detert Oude Weme R.G., Kovács Á.T., de Jong S.J., Veening J.W., Siebring J., Kuipers O.P., 2015. PLoS One, 10 (4) pp. e0123239.
 
The ParB-parS Chromosome Segregation System Modulates Competence Development in Streptococcus pneumoniae.
Attaiech L., Minnen A., Kjos M., Gruber S., Veening J.W., 2015. mBio, 6 (4) pp. e00662. Peer-reviewed.
 
To mutate or not to mutate: genetic and epigenetic heterogeneity contribute to bacterial adaptation (comment on DOI 10.1002/bies.201400153).
Veening J.W., 2015. Bioessays, 37 (2) pp. 116-117.
 
Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin.
Slager J., Kjos M., Attaiech L., Veening J.W., 2014. Cell, 157 (2) pp. 395-406.
 
Bacillus subtilis biosensor engineered to assess meat spoilage.
Daszczuk A., Dessalegne Y., Drenth I., Hendriks E., Jo E., van Lente T., Oldebesten A., Parrish J., Poljakova W., Purwanto A.A. et al., 2014. ACS Synthetic Biology, 3 (12) pp. 999-1002.
 
Control of transcription elongation by GreA determines rate of gene expression in Streptococcus pneumoniae.
Yuzenkova Y., Gamba P., Herber M., Attaiech L., Shafeeq S., Kuipers O.P., Klumpp S., Zenkin N., Veening J.W., 2014. Nucleic Acids Research, 42 (17) pp. 10987-10999.
 
Interlinked sister chromosomes arise in the absence of condensin during fast replication in B. subtilis.
Gruber S., Veening J.W., Bach J., Blettinger M., Bramkamp M., Errington J., 2014. Current Biology, 24 (3) pp. 293-298. Peer-reviewed.
 
Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis.
Kjos M., Oppegård C., Diep D.B., Nes I.F., Veening J.W., Nissen-Meyer J., Kristensen T., 2014. Molecular Microbiology, 92 (6) pp. 1177-1187.
 
Streptococcus pneumoniae PBP2x mid-cell localization requires the C-terminal PASTA domains and is essential for cell shape maintenance.
Peters K., Schweizer I., Beilharz K., Stahlmann C., Veening J.W., Hakenbeck R., Denapaite D., 2014. Molecular Microbiology, 92 (4) pp. 733-755.
 
Tracking of chromosome dynamics in live Streptococcus pneumoniae reveals that transcription promotes chromosome segregation.
Kjos M., Veening J.W., 2014. Molecular Microbiology, 91 (6) pp. 1088-1105.
 
What makes the lac-pathway switch: identifying the fluctuations that trigger phenotype switching in gene regulatory systems.
Bhogale P.M., Sorg R.A., Veening J.W., Berg J., 2014. Nucleic Acids Research, 42 (18) pp. 11321-11328.
 
A single amino acid substitution in the MurF UDP-MurNAc-pentapeptide synthetase renders Streptococcus pneumoniae dependent on CO2 and temperature.
Burghout P., Quintero B., Bos L., Beilharz K., Veening J.W., de Jonge M.I., van der Linden M., van der Ende A., Hermans P.W., 2013. Molecular Microbiology, 89 (3) pp. 494-506.
 
Balanced transcription of cell division genes in Bacillus subtilis as revealed by single cell analysis.
Trip E.N., Veening J.W., Stewart E.J., Errington J., Scheffers D.J., 2013. Environmental Microbiology, 15 (12) pp. 3196-3209.
 
Benchmarking various green fluorescent protein variants in Bacillus subtilis, Streptococcus pneumoniae, and Lactococcus lactis for live cell imaging.
Overkamp W., Beilharz K., Detert Oude Weme R., Solopova A., Karsens H., Kovács Á., Kok J., Kuipers O.P., Veening J.W., 2013. Applied and Environmental Microbiology, 79 (20) pp. 6481-6490.
 
How to get (a)round: mechanisms controlling growth and division of coccoid bacteria.
Pinho M.G., Kjos M., Veening J.W., 2013. Nature Reviews. Microbiology, 11 (9) pp. 601-614.
 
Noise and Stochasticity in Gene Expression
Mikkel Girke Jørgensen, Renske van Raaphorst, Jan-Willem Veening, 2013..
 
Spo0A regulates chromosome copy number during sporulation by directly binding to the origin of replication in Bacillus subtilis.
Boonstra M., de Jong I.G., Scholefield G., Murray H., Kuipers O.P., Veening J.W., 2013. Molecular Microbiology, 87 (4) pp. 925-938.
 
The localization of key Bacillus subtilis penicillin binding proteins during cell growth is determined by substrate availability.
Lages M.C., Beilharz K., Morales Angeles D., Veening J.W., Scheffers D.J., 2013. Environmental Microbiology, 15 (12) pp. 3272-3281.
 
Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP.
Beilharz K., Nováková L., Fadda D., Branny P., Massidda O., Veening J.W., 2012. Proceedings of the National Academy of Sciences of the United States of America, 109 (15) pp. E905-E913.
 
Single cell analysis of gene expression patterns during carbon starvation in Bacillus subtilis reveals large phenotypic variation.
de Jong I.G., Veening J.W., Kuipers O.P., 2012. Environmental Microbiology, 14 (12) pp. 3110-3121.
 
DnaA and ORC: more than DNA replication initiators.
Scholefield G., Veening J.W., Murray H., 2011. Trends in Cell Biology, 21 (3) pp. 188-194.
 
Live Cell Imaging of Bacillus subtilis and Streptococcus pneumoniae using Automated Time-lapse Microscopy.
de Jong I.G., Beilharz K., Kuipers O.P., Veening J.W., 2011. Journal of Visualized Experiments 53 pp. UNSP e3145.
 
SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae.
Minnen A., Attaiech L., Thon M., Gruber S., Veening J.W., 2011. Molecular Microbiology, 81 (3) pp. 676-688. Peer-reviewed.
 
Gene position within a long transcript as a determinant for stochastic switching in bacteria.
Veening J.W., Kuipers O.P., 2010. Molecular Microbiology, 76 (2) pp. 269-272.
 
Heterochronic phosphorelay gene expression as a source of heterogeneity in Bacillus subtilis spore formation.
de Jong I.G., Veening J.W., Kuipers O.P., 2010. Journal of Bacteriology, 192 (8) pp. 2053-2067.
Transformation of environmental Bacillus subtilis isolates by transiently inducing genetic competence.
Nijland R., Burgess J.G., Errington J., Veening J.W., 2010. PLoS One, 5 (3) pp. e9724.
 
A mechanism for cell cycle regulation of sporulation initiation in Bacillus subtilis.
Veening J.W., Murray H., Errington J., 2009. Genes and Development, 23 (16) pp. 1959-1970.
 
Cellular localization of choline-utilization proteins in Streptococcus pneumoniae using novel fluorescent reporter systems.
Eberhardt A., Wu L.J., Errington J., Vollmer W., Veening J.W., 2009. Molecular Microbiology, 74 (2) pp. 395-408.
 
Two-step assembly dynamics of the Bacillus subtilis divisome.
Gamba P., Veening J.W., Saunders N.J., Hamoen L.W., Daniel R.A., 2009. Journal of Bacteriology, 191 (13) pp. 4186-4194.
 
Bet-hedging and epigenetic inheritance in bacterial cell development.
Veening J.W., Stewart E.J., Berngruber T.W., Taddei F., Kuipers O.P., Hamoen L.W., 2008. Proceedings of the National Academy of Sciences of the United States of America, 105 (11) pp. 4393-4398.
 
Bistability, epigenetics, and bet-hedging in bacteria.
Veening J.W., Smits W.K., Kuipers O.P., 2008. Annual Review of Microbiology, 62 pp. 193-210.
 
Phenotypic Variation and Bistable Switching in Bacteria
Smits Wiep Klaas, Veening Jan-Willem, Kuipers Oscar, 2008..
 
Transient heterogeneity in extracellular protease production by Bacillus subtilis.
Veening J.W., Igoshin O.A., Eijlander R.T., Nijland R., Hamoen L.W., Kuipers O.P., 2008. Molecular Systems Biology, 4 p. 184.
 
A derepression system based on the Bacillus subtilis sporulation pathway offers dynamic control of heterologous gene expression.
Nijland R., Veening J.W., Kuipers O.P., 2007. Applied and Environmental Microbiology, 73 (7) pp. 2390-2393.
 
Production and secretion stress caused by overexpression of heterologous alpha-amylase leads to inhibition of sporulation and a prolonged motile phase in Bacillus subtilis.
Lulko A.T., Veening J.W., Buist G., Smits W.K., Blom E.J., Beekman A.C., Bron S., Kuipers O.P., 2007. Applied and Environmental Microbiology, 73 (16) pp. 5354-5362.
 
Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in Bacillus subtilis.
Smits W.K., Bongiorni C., Veening J.W., Hamoen L.W., Kuipers O.P., Perego M., 2007. Molecular Microbiology, 65 (1) pp. 103-120.
 
The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca.
Romero D., de Vicente A., Rakotoaly R.H., Dufour S.E., Veening J.W., Arrebola E., Cazorla F.M., Kuipers O.P., Paquot M., Pérez-García A., 2007. Molecular Plant-Microbe Interactions, 20 (4) pp. 430-440.
 
Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis.
Veening J.W., Kuipers O.P., Brul S., Hellingwerf K.J., Kort R., 2006. Journal of Bacteriology, 188 (8) pp. 3099-3109.
 
Phenotypic variation in bacteria: the role of feedback regulation.
Smits W.K., Kuipers O.P., Veening J.W., 2006. Nature Reviews. Microbiology, 4 (4) pp. 259-271.
 
Single cell analysis of gene expression patterns of competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media.
Veening J.W., Smits W.K., Hamoen L.W., Kuipers O.P., 2006. Journal of Applied Microbiology, 101 (3) pp. 531-541.
 
Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation.
Romero D., Pérez-García A., Veening J.W., de Vicente A., Kuipers O.P., 2006. Journal of Microbiological Methods, 66 (3) pp. 556-559.
 
Development and characterization of a subtilin-regulated expression system in Bacillus subtilis: strict control of gene expression by addition of subtilin.
Bongers R.S., Veening J.W., Van Wieringen M., Kuipers O.P., Kleerebezem M., 2005. Applied and Environmental Microbiology, 71 (12) pp. 8818-8824.
 
Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis.
Veening J.W., Hamoen L.W., Kuipers O.P., 2005. Molecular Microbiology, 56 (6) pp. 1481-1494.
 
The Bacillus secretion stress response is an indicator for alpha-amylase production levels.
Westers H., Darmon E., Zanen G., Veening J.W., Kuipers O.P., Bron S., Quax W.J., van Dijl J.M., 2004. Letters in Applied Microbiology, 39 (1) pp. 65-73.
 
Visualization of differential gene expression by improved cyan fluorescent protein and yellow fluorescent protein production in Bacillus subtilis.
Veening J.W., Smits W.K., Hamoen L.W., Jongbloed J.D., Kuipers O.P., 2004. Applied and Environmental Microbiology, 70 (11) pp. 6809-6815.
 
The extracellular proteome of Bacillus subtilis under secretion stress conditions.
Antelmann H., Darmon E., Noone D., Veening J.W., Westers H., Bron S., Kuipers O.P., Devine K.M., Hecker M., van Dijl J.M., 2003. Molecular Microbiology, 49 (1) pp. 143-156.
Partagez:
Unicentre - CH-1015 Lausanne
Suisse
Tél. +41 21 692 11 11
Swiss University