Winship Herr

Publications | Mémoires et thèses

La recherche avancée est accessible via Serval

Les publications peuvent être gérées en accédant à Serval via MyUnil

120 publications

2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2007 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 | 1990 | 1989 | 1988 | 1987 | 1986 | 1985 | 1984 | 1983 | 1982 | 1981 | 1979 | 1978 | 1975 | 1974 |
HCF-2 inhibits cell proliferation and activates differentiation-gene expression programs.
Gudkova D., Dergai O., Praz V., Herr W., 2019/06/20. Nucleic acids research, 47 (11) pp. 5792-5808. Peer-reviewed.
Cortical and Commissural Defects Upon HCF-1 Loss in Nkx2.1-Derived Embryonic Neurons and Glia.
Minocha S., Herr W., 2019/06. Developmental neurobiology, 79 (6) pp. 578-595. Peer-reviewed.
Correction for Minocha et al., "Rapid Recapitulation of Nonalcoholic Steatohepatitis upon Loss of Host Cell Factor 1 Function in Mouse Hepatocytes".
Minocha S., Villeneuve D., Praz V., Moret C., Lopes M., Pinatel D., Rib L., Guex N., Herr W., 2019/05/15. Molecular and cellular biology, 39 (10). Peer-reviewed.
Differential regulation of RNA polymerase III genes during liver regeneration.
Yeganeh M., Praz V., Carmeli C., Villeneuve D., Rib L., Guex N., Herr W., Delorenzi M., Hernandez N., CycliX consortium, 2019/02/28. Nucleic Acids Research, 47 (4) pp. 1786-1796. Peer-reviewed.
Rapid Recapitulation of Nonalcoholic Steatohepatitis upon Loss of Host Cell Factor 1 Function in Mouse Hepatocytes
Minocha S., Villeneuve D., Praz V., Moret C., Lopes M., Pinatel D., Rib L., Guex N., Herr W., 2019/02/15. Molecular and cellular biology, 39 (5) pp. UNSP e00405. Peer-reviewed.
The conserved threonine-rich region of the HCF-1<sub>PRO</sub> repeat activates promiscuous OGT:UDP-GlcNAc glycosylation and proteolysis activities.
Kapuria V., Röhrig U.F., Waridel P., Lammers F., Borodkin V.S., van Aalten DMF, Zoete V., Herr W., 2018/11/16. The Journal of biological chemistry, 293 (46) pp. 17754-17768. Peer-reviewed.
Cycles of gene expression and genome response during mammalian tissue regeneration.
Rib L., Villeneuve D., Minocha S., Praz V., Hernandez N., Guex N., Herr W., CycliX Consortium, 2018/09/12. Epigenetics & chromatin, 11 (1) p. 52. Peer-reviewed.
Segregated hepatocyte proliferation and metabolic states within the regenerating mouse liver.
Minocha S., Villeneuve D., Rib L., Moret C., Guex N., Herr W., 2017. Hepatology Communications, 1 (9) pp. 871-885. Peer-reviewed.
Compensatory embryonic response to allele-specific inactivation of the murine X-linked gene Hcfc1.
Minocha S., Sung T.L., Villeneuve D., Lammers F., Herr W., 2016. Developmental Biology, 412 (1) pp. 1-17. Peer-reviewed.
Epiblast-specific loss of HCF-1 leads to failure in anterior-posterior axis specification.
Minocha S., Bessonnard S., Sung T.L., Moret C., Constam D.B., Herr W., 2016. Developmental Biology, 91 (4) pp. 294-297. Peer-reviewed.
Proteolysis of HCF-1 by Ser/Thr glycosylation-incompetent O-GlcNAc transferase:UDP-GlcNAc complexes.
Kapuria V., Röhrig U.F., Bhuiyan T., Borodkin V.S., van Aalten D.M., Zoete V., Herr W., 2016. Genes and Development, 30 (8) pp. 960-972. Peer-reviewed.
Distinct OGT-Binding Sites Promote HCF-1 Cleavage.
Bhuiyan T., Waridel P., Kapuria V., Zoete V., Herr W., 2015. Plos One, 10 (8) pp. e0136636. Peer-reviewed.
Genome-wide analysis of SREBP1 activity around the clock reveals its combined dependency on nutrient and circadian signals.
Gilardi F., Migliavacca E., Naldi A., Baruchet M., Canella D., Le Martelot G., Guex N., Desvergne B., CycliX Consortium, 2014. PLoS Genetics, 10 (3) pp. e1004155.
Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization.
Bonhoure N., Bounova G., Bernasconi D., Praz V., Lammers F., Canella D., Willis I.M., Herr W., Hernandez N., Delorenzi M. et al., 2014. Genome Research, 24 (7) pp. 1157-1168.
HCF-1 is cleaved in the active site of O-GlcNAc transferase.
Lazarus M.B., Jiang J., Kapuria V., Bhuiyan T., Janetzko J., Zandberg W.F., Vocadlo D.J., Herr W., Walker S., 2013. Science, 342 (6163) pp. 1235-1239. Peer-reviewed.
HCFC1 is a common component of active human CpG-island promoters and coincides with ZNF143, THAP11, YY1, and GABP transcription factor occupancy.
Michaud J., Praz V., James Faresse N., Jnbaptiste C.K., Tyagi S., Schütz F., Herr W., 2013. Genome Research, 23 (6) pp. 907-916.
A multiplicity of factors contributes to selective RNA polymerase III occupancy of a subset of RNA polymerase III genes in mouse liver.
Canella D., Bernasconi D., Gilardi F., LeMartelot G., Migliavacca E., Praz V., Cousin P., Delorenzi M., Hernandez N., CycliX Consortium, 2012. Genome Research, 22 (4) pp. 666-680.
Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.
Le Martelot G., Canella D., Symul L., Migliavacca E., Gilardi F., Liechti R., Martin O., Harshman K., Delorenzi M., Desvergne B. et al., 2012. PLoS Biology, 10 (11) pp. e1001442.
HCF-1 self-association via an interdigitated Fn3 structure facilitates transcriptional regulatory complex formation.
Park J., Lammers F., Herr W., Song J.J., 2012. Proceedings of the National Academy of Sciences of the United States of America, 109 (43) pp. 17430-17435.
Drosophila melanogaster dHCF Interacts with both PcG and TrxG Epigenetic Regulators.
Rodriguez-Jato S., Busturia A., Herr W., 2011. PLoS One, 6 (12) pp. e27479.
O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1.
Capotosti F., Guernier S., Lammers F., Waridel P., Cai Y., Jin J., Conaway J.W., Conaway R.C., Herr W., 2011. Cell, 144 (3) pp. 376-388.
Drosophila Myc interacts with host cell factor (dHCF) to activate transcription and control growth.
Furrer M., Balbi M., Albarca-Aguilera M., Gallant M., Herr W., Gallant P., 2010. Journal of Biological Chemistry, 285 (51) pp. 39623-39636. Peer-reviewed.
Role of the HCF-1 basic region in sustaining cell proliferation.
Mangone M., Myers M.P., Herr W., 2010. PLoS One, 5 (2) pp. e9020. Peer-reviewed.
E2F1 mediates DNA damage and apoptosis through HCF-1 and the MLL family of histone methyltransferases.
Tyagi S., Herr W., 2009. EMBO Journal, 28 (20) pp. 3185-3195. Peer-reviewed.
E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases.
Tyagi S., Chabes A.L., Wysocka J., Herr W., 2007. Molecular Cell, 27 (1) pp. 107-119. Peer-reviewed.
Epigenetic regulation of histone H3 serine 10 phosphorylation status by HCF-1 proteins in C. elegans and mammalian cells.
Lee S., Horn V., Julien E., Liu Y., Wysocka J., Bowerman B., Hengartner M.O., Herr W., 2007. PLoS ONE, 2 (11) pp. e1213. Peer-reviewed.
Species selectivity of mixed-lineage leukemia/trithorax and HCF proteolytic maturation pathways.
Capotosti F., Hsieh J.J., Herr W., 2007. Molecular and Cellular Biology, 27 (20) pp. 7063-7072. Peer-reviewed.
Mutational analysis of BTAF1-TBP interaction: BTAF1 can rescue DNA-binding defective TBP mutants.
Klejman M.P., Zhao X., van Schaik F.M., Herr W., Timmers H.T., 2005. Nucleic acids research, 33 (17) pp. 5426-5436. Peer-reviewed.
A nonconserved surface of the TFIIB zinc ribbon domain plays a direct role in RNA polymerase II recruitment.
Tubon T.C., Tansey W.P., Herr W., 2004. Molecular and Cellular Biology, 24 (7) pp. 2863-2874. Peer-reviewed.
A switch in mitotic histone H4 lysine 20 methylation status is linked to M phase defects upon loss of HCF-1.
Julien E., Herr W., 2004. Molecular Cell, 14 (6) pp. 713-725. Peer-reviewed.
Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression.
Yokoyama A., Wang Z., Wysocka J., Sanyal M., Aufiero D.J., Kitabayashi I., Herr W., Cleary M.L., 2004. Molecular and cellular biology, 24 (13) pp. 5639-5649. Peer-reviewed.
A shared surface of TBP directs RNA polymerase II and III transcription via association with different TFIIB family members.
Zhao X., Schramm L., Hernandez N., Herr W., 2003. Molecular Cell, 11 (1) pp. 151-161.
Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1.
Wysocka J., Myers M.P., Laherty C.D., Eisenman R.N., Herr W., 2003. Genes and Development, 17 (7) pp. 896-911.
Proteolytic processing is necessary to separate and ensure proper cell growth and cytokinesis functions of HCF-1.
Julien E., Herr W., 2003. EMBO Journal, 22 (10) pp. 2360-2369. Peer-reviewed.
Role of the inhibitory DNA-binding surface of human TATA-binding protein in recruitment of human TFIIB family members.
Zhao X., Herr W., 2003. Molecular and Cellular Biology, 23 (22) pp. 8152-8160.
The herpes simplex virus VP16-induced complex: the makings of a regulatory switch.
Wysocka J., Herr W., 2003. Trends in Biochemical Sciences, 28 (6) pp. 294-304.
A regulated two-step mechanism of TBP binding to DNA: a solvent-exposed surface of TBP inhibits TATA box recognition.
Zhao X., Herr W., 2002. Cell, 108 (5) pp. 615-627.
Inactivation of the retinoblastoma protein family can bypass the HCF-1 defect in tsBN67 cell proliferation and cytokinesis.
Reilly P.T., Wysocka J., Herr W., 2002. Molecular and Cellular Biology, 22 (19) pp. 6767-6778.
Spontaneous reversion of tsBN67 cell proliferation and cytokinesis defects in the absence of HCF-1 function.
Reilly P.T., Herr W., 2002. Experimental Cell Research, 277 (1) pp. 119-130.
Loss of HCF-1-chromatin association precedes temperature-induced growth arrest of tsBN67 cells.
Wysocka J., Reilly P.T., Herr W., 2001/06. Molecular and cellular biology, 21 (11) pp. 3820-3829. Peer-reviewed.
Developmental and cell-cycle regulation of Caenorhabditis elegans HCF phosphorylation.
Wysocka J., Liu Y., Kobayashi R., Herr W., 2001/05. Biochemistry, 40 (19) pp. 5786-5794. Peer-reviewed.
DNA recognition by the herpes simplex virus transactivator VP16: a novel DNA-binding structure.
Babb R., Huang C.C., Aufiero D.J., Herr W., 2001. Molecular and Cellular Biology, 21 (14) pp. 4700-4712.
Stabilization but not the transcriptional activity of herpes simplex virus VP16-induced complexes is evolutionarily conserved among HCF family members.
Lee S., Herr W., 2001. Journal of Virology, 75 (24) pp. 12402-12411.
HCF-1 amino- and carboxy-terminal subunit association through two separate sets of interaction modules: involvement of fibronectin type 3 repeats.
Wilson A.C., Boutros M., Johnson K.M., Herr W., 2000/09. Molecular and Cellular Biology, 20 (18) pp. 6721-6730.
Crystal structure of the conserved core of the herpes simplex virus transcriptional regulatory protein VP16.
Liu Y., Gong W., Huang C.C., Herr W., Cheng X., 1999/07. Genes and Development, 13 (13) pp. 1692-1703.
Selected elements of herpes simplex virus accessory factor HCF are highly conserved in Caenorhabditis elegans.
Liu Y., Hengartner M.O., Herr W., 1999/01. Molecular and Cellular Biology, 19 (1) pp. 909-915.
The herpes simplex virus VP16-induced complex: mechanisms of combinatorial transcriptional regulation.
Herr W., 1998. Cold Spring Harbor symposia on quantitative biology, 63 pp. 599-607. Peer-reviewed.
The mouse telomerase RNA 5"-end lies just upstream of the telomerase template sequence.
Hinkley C.S., Blasco M.A., Funk W.D., Feng J., Villeponteau B., Greider C.W., Herr W., 1998/01. Nucleic Acids Research, 26 (2) pp. 532-536.
OCA-B is a functional analog of VP16 but targets a separate surface of the Oct-1 POU domain.
Babb R., Cleary M.A., Herr W., 1997/12. Molecular and Cellular Biology, 17 (12) pp. 7295-7305.
VP16 targets an amino-terminal domain of HCF involved in cell cycle progression.
Wilson A.C., Freiman R.N., Goto H., Nishimoto T., Herr W., 1997/10. Molecular and Cellular Biology, 17 (10) pp. 6139-6146.
Structural flexibility in transcription complex formation revealed by protein-DNA photocrosslinking.
Cleary M.A., Pendergrast P.S., Herr W., 1997/08. Proceedings of the National Academy of Sciences of the United States of America, 94 (16) pp. 8450-8455. Peer-reviewed.
Interdigitated residues within a small region of VP16 interact with Oct-1, HCF, and DNA.
Lai J.S., Herr W., 1997/07. Molecular and Cellular Biology, 17 (7) pp. 3937-3946.
A single-point mutation in HCF causes temperature-sensitive cell-cycle arrest and disrupts VP16 function.
Goto H., Motomura S., Wilson A.C., Freiman R.N., Nakabeppu Y., Fukushima K., Fujishima M., Herr W., Nishimoto T., 1997/03. Genes and Development, 11 (6) pp. 726-737.
N-Oct 5 is generated by in vitro proteolysis of the neural POU-domain protein N-Oct 3.
Atanasoski S., Schreiber E., Fontana A., Herr W., 1997/03. Oncogene, 14 (11) pp. 1287-1294. Peer-reviewed.
Selective use of TBP and TFIIB revealed by a TATA-TBP-TFIIB array with altered specificity.
Tansey W.P., Herr W., 1997/02. Science, 275 (5301) pp. 829-831. Peer-reviewed.
TAFs: guilt by association?
Tansey W.P., Herr W., 1997. Cell, 88 (6) pp. 729-732. Peer-reviewed.
Viral mimicry: common mode of association with HCF by VP16 and the cellular protein LZIP.
Freiman R.N., Herr W., 1997. Genes and Development, 11 (23) pp. 3122-3127.
Differential control of transcription by homologous homeodomain coregulators.
Huang C.C., Herr W., 1996/06. Molecular and Cellular Biology, 16 (6) pp. 2967-2976.
The Oct-1 POU-specific domain can stimulate small nuclear RNA gene transcription by stabilizing the basal transcription complex SNAPc.
Mittal V., Cleary M.A., Herr W., Hernandez N., 1996/05. Molecular and Cellular Biology, 16 (5) pp. 1955-1965.
The ability to associate with activation domains in vitro is not required for the TATA box-binding protein to support activated transcription in vivo.
Tansey W.P., Herr W., 1995/11. Proceedings of the National Academy of Sciences of the United States of America, 92 (23) pp. 10550-10554. Peer-reviewed.
The HCF repeat is an unusual proteolytic cleavage signal.
Wilson A.C., Peterson M.G., Herr W., 1995/10. Genes and Development, 9 (20) pp. 2445-2458.
The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain.
Herr W., Cleary M.A., 1995/07. Genes and Development, 9 (14) pp. 1679-1693.
Basal promoter elements as a selective determinant of transcriptional activator function.
Das G., Hinkley C.S., Herr W., 1995/04. Nature, 374 (6523) pp. 657-660. Peer-reviewed.
Mechanisms for flexibility in DNA sequence recognition and VP16-induced complex formation by the Oct-1 POU domain.
Cleary M.A., Herr W., 1995/04. Molecular and Cellular Biology, 15 (4) pp. 2090-2100.
Chromosomes and expression mechanisms
Herr W., Kingston R., 1995. Current Opinion in Genetics and Development, 5 (2) pp. 151-152. Peer-reviewed.
The gene encoding the VP16-accessory protein HCF (HCFC1) resides in human Xq28 and is highly expressed in fetal tissues and the adult kidney.
Wilson A.C., Parrish J.E., Massa H.F., Nelson D.L., Trask B.J., Herr W., 1995/01. Genomics, 25 (2) pp. 462-468. Peer-reviewed.
Multiple regions of TBP participate in the response to transcriptional activators in vivo.
Tansey W.P., Ruppert S., Tjian R., Herr W., 1994/11. Genes and Development, 8 (22) pp. 2756-2769.
Reconstitution of transcriptional activation domains by reiteration of short peptide segments reveals the modular organization of a glutamine-rich activation domain.
Tanaka M., Herr W., 1994/09. Molecular and Cellular Biology, 14 (9) pp. 6056-6067.
The Oct-2 glutamine-rich and proline-rich activation domains can synergize with each other or duplicates of themselves to activate transcription.
Tanaka M., Clouston W.M., Herr W., 1994/09. Molecular and Cellular Biology, 14 (9) pp. 6046-6055.
Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules.
Klemm J.D., Rould M.A., Aurora R., Herr W., Pabo C.O., 1994/04. Cell, 77 (1) pp. 21-32. Peer-reviewed.
Enhanced activation of the human histone H2B promoter by an Oct-1 variant generated by alternative splicing.
Das G., Herr W., 1993/11. Journal of Biological Chemistry, 268 (33) pp. 25026-25032. Peer-reviewed.
The VP16 accessory protein HCF is a family of polypeptides processed from a large precursor protein.
Wilson A.C., LaMarco K., Peterson M.G., Herr W., 1993/07. Cell, 74 (1) pp. 115-125.
The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage lambda repressor DNA-binding domain.
Assa-Munt N., Mortishire-Smith R.J., Aurora R., Herr W., Wright P.E., 1993/04. Cell, 73 (1) pp. 193-205.
Combinatorial control of transcription: the herpes simplex virus VP16-induced complex.
Wilson A.C., Cleary M.A., Lai J.S., LaMarco K., Peterson M.G., Herr W., 1993. Cold Spring Harbor Symposia On Quantitative Biology, 58 pp. 167-178.
Differential positive control by Oct-1 and Oct-2: activation of a transcriptionally silent motif through Oct-1 and VP16 corecruitment.
Cleary M.A., Stern S., Tanaka M., Herr W., 1993/01. Genes and Development, 7 (1) pp. 72-83.
The SV40 enhancer: transcriptional regulation through a hierarchy of combinatorial interactions
Herr W., 1993. Seminars in Virology, 4 (1) pp. 3-13. Peer-reviewed.
The kappa B enhancer motifs in human immunodeficiency virus type 1 and simian virus 40 recognize different binding activities in human Jurkat and H9 T cells: evidence for NF-kappa B-independent activation of the kappa B motif.
Phares W., Franza B.R., Herr W., 1992/12. Journal of Virology, 66 (12) pp. 7490-7498.
A single amino acid exchange transfers VP16-induced positive control from the Oct-1 to the Oct-2 homeo domain.
Lai J.S., Cleary M.A., Herr W., 1992/11. Genes and Development, 6 (11) pp. 2058-2065.
Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations.
Lai J.S., Herr W., 1992/08. Proceedings of the National Academy of Sciences of the United States of America, 89 (15) pp. 6958-6962. Peer-reviewed.
Promoter-selective activation domains in Oct-1 and Oct-2 direct differential activation of an snRNA and mRNA promoter.
Tanaka M., Lai J.S., Herr W., 1992/02. Cell, 68 (4) pp. 755-767.
Segments of the POU domain influence one another's DNA-binding specificity.
Aurora R., Herr W., 1992/02. Molecular and Cellular Biology, 12 (2) pp. 455-467.
Oct-1 and Oct-2: Differential transcriptional regulation by proteins that bind to the same DNA sequence
Herr W., 1992. pp. 1103-1135 dans McKnight S.L., Yamamoto K.R. (eds.) Transcriptional regulation 2 chap. 41, Cold Spring Harbour laboratory Press.
The herpes simplex virus trans-activator VP16 recognizes the Oct-1 homeo domain: evidence for a homeo domain recognition subdomain.
Stern S., Herr W., 1991/12. Genes and Development, 5 (12B) pp. 2555-2566.
New Medicare capital regulations: a capital idea?
Clarke R.L., Herr W.W., 1991/08. Journal of American Health Policy, 1 (1) pp. 23-26.
Functional similarities between human immunodeficiency virus type 1 and simian virus 40 kappa B proto-enhancers.
Phares W., Herr W., 1991/05. Journal of Virology, 65 (5) pp. 2200-2210.
Gene activation. An agent of suppression.
Herr W., 1991/04. Nature, 350 (6319) pp. 554-555. Peer-reviewed.
Stable growth of simian virus 40 recombinants containing multimerized enhancers.
Ondek B., Herr W., 1991/03. Journal of Virology, 65 (3) pp. 1596-1599.
Regulation of eukaryotic RNA polymerase II transcription by sequence-specific DNA-binding proteins
Herr W., 1991. pp. 25-56 dans Cohen P., Foulkes J.G. (eds.) The hormonal control of gene transcription, Elsevier.
The gene for the ubiquitous octamer-binding protein Oct-1 is on human chromosome 1, region cen-q32, and near Ly-22 and Ltw-4 on mouse chromosome 1.
Hsieh C.L., Sturm R., Herr W., Francke U., 1990/04. Genomics, 6 (4) pp. 666-672. Peer-reviewed.
Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphorylation.
Tanaka M., Herr W., 1990/02. Cell, 60 (3) pp. 375-386.
The Oct-1 homoeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16.
Stern S., Tanaka M., Herr W., 1989/10. Nature, 341 (6243) pp. 624-630. Peer-reviewed.
Activation of the U2 snRNA promoter by the octamer motif defines a new class of RNA polymerase II enhancer elements.
Tanaka M., Grossniklaus U., Herr W., Hernandez N., 1988/12. Genes and Development, 2 (12B) pp. 1764-1778.
The POU domain is a bipartite DNA-binding structure.
Sturm R.A., Herr W., 1988/12. Nature, 336 (6199) pp. 601-604. Peer-reviewed.
The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene products.
Herr W., Sturm R.A., Clerc R.G., Corcoran L.M., Baltimore D., Sharp P.A., Ingraham H.A., Rosenfeld M.G., Finney M., Ruvkun G. et al., 1988/12. Genes and Development, 2 (12A) pp. 1513-1516.
The ubiquitous octamer-binding protein Oct-1 contains a POU domain with a homeo box subdomain.
Sturm R.A., Das G., Herr W., 1988/12. Genes and Development, 2 (12A) pp. 1582-1599.
OBP100 binds remarkably degenerate octamer motifs through specific interactions with flanking sequences.
Baumruker T., Sturm R., Herr W., 1988/11. Genes and Development, 2 (11) pp. 1400-1413.
Simian virus 40 revertant enhancers exhibit restricted host ranges for enhancer function.
Shepard A., Clarke J., Herr W., 1988/09. Journal of Virology, 62 (9) pp. 3364-3370.
The SV40 enhancer contains two distinct levels of organization.
Ondek B., Gloss L., Herr W., 1988/05. Nature, 333 (6168) pp. 40-45. Peer-reviewed.
A 100-kD HeLa cell octamer binding protein (OBP100) interacts differently with two separate octamer-related sequences within the SV40 enhancer.
Sturm R., Baumruker T., Franza B.R., Herr W., 1987/12. Genes and Development, 1 (10) pp. 1147-1160.
Activation of mutated simian virus 40 enhancers by amplification of wild-type enhancer elements.
Clarke J., Herr W., 1987/11. Journal of Virology, 61 (11) pp. 3536-3542.
Discrete elements within the SV40 enhancer region display different cell-specific enhancer activities.
Ondek B., Shepard A., Herr W., 1987. EMBO Journal, 6 (4) pp. 1017-1025.
Duplications within mutated SV40 enhancers that restore enhancer function
Herr W., Clarke J., Ondek B., Shepard A., Fox H., 1986., Cold Spring Harbor Meeting on Cancer Cells; Cold Spring Harbor, NY, September 1985 pp. 95-101 dans Botchan M., Grodzicker T., Sharp P.A. (eds.) DNA tumor viruses : control of gene expression and replication, Cancer Cells, Cold Spring Harbor Laboratory.
The SV40 enhancer is composed of multiple functional elements that can compensate for one another.
Herr W., Clarke J., 1986. Cell, 45 (3) pp. 461-470.
Diethyl pyrocarbonate: a chemical probe for secondary structure in negatively supercoiled DNA.
Herr W., 1985. Proceedings of the National Academy of Sciences of the United States of America, 82 (23) pp. 8009-8013.
Duplications of a mutated simian virus 40 enhancer restore its activity.
Herr W., Gluzman Y., 1985. Nature, 313 (6004) pp. 711-714.
Free and integrated recombinant murine leukemia virus DNAs appear in preleukemic thymuses of AKR/J mice.
Herr W., Gilbert W., 1984. Journal of Virology, 50 (1) pp. 155-162.
Nucleotide sequence of AKV murine leukemia virus.
Herr W., 1984. Journal of Virology, 49 (2) pp. 471-478.
Isolation and mapping of cDNA hybridization probes specific for ecotropic and nonecotropic murine leukemia proviruses.
Herr W., Schwartz D., Gilbert W., 1983. Virology, 125 (1) pp. 139-154.
Monoclonal AKR/J thymic leukemias contain multiple JH immunoglobulin gene rearrangements.
Herr W., Perlmutter A.P., Gilbert W., 1983. Proceedings of the National Academy of Sciences of the United States of America, 80 (24) pp. 7433-7436.
Somatically acquired recombinant murine leukemia proviruses in thymic leukemias of AKR/J mice.
Herr W., Gilbert W., 1983. Journal of Virology, 46 (1) pp. 70-82.
Germ-line MuLV reintegrations in AKR/J mice.
Herr W., Gilbert W., 1982. Nature, 296 (5860) pp. 865-868.
Nucleotide sequence of the 3' half of AKV.
Herr W., Corbin V., Gilbert W., 1982. Nucleic Acids Research, 10 (21) pp. 6931-6944.
Chemical probing of the tRNA--ribosome complex.
Peattie D.A., Herr W., 1981. Proceedings of the National Academy of Sciences of the United States of America, 78 (4) pp. 2273-2277.
Secondary structure model for 23S ribosomal RNA.
Noller H.F., Kop J., Wheaton V., Brosius J., Gutell R.R., Kopylov A.M., Dohme F., Herr W., Stahl D.A., Gupta R. et al., 1981. Nucleic Acids Research, 9 (22) pp. 6167-6189.
Mechanism of ribosomal subunit association: discrimination of specific sites in 16 S RNA essential for association activity.
Herr W., Chapman N.M., Noller H.F., 1979. Journal of Molecular Biology, 130 (4) pp. 433-449.
Protection of specific sites in 23 S and 5 S RNA from chemical modification by association of 30 S and 50 S ribosomes.
Herr W., Noller H.F., 1979. Journal of Molecular Biology, 130 (4) pp. 421-432.
Nucleotide sequences of accessible regions of 23S RNA in 50S ribosomal subunits.
Herr W., Noller H.F., 1978. Biochemistry, 17 (2) pp. 307-315.
A fragment of 23S RNA containing a nucleotide sequence complementary to a region of 5S RNA.
Herr W., Noller H.F., 1975. FEBS Letters, 53 (2) pp. 248-252.
Letters to the editor: Accessibility of 5 S RNA in 50 S ribosomal subunits.
Noller H.F., Herr W., 1974. Journal of Molecular Biology, 90 (1) pp. 181-184.
Nucleotide sequence of the 3' terminus of E. coli 16S ribosomal RNA.
Noller H.F., Herr W., 1974. Molecular Biology Reports, 1 (8) pp. 437-439.
Unicentre - CH-1015 Lausanne
Tél. +41 21 692 11 11
Fax. +41 21 692 26 15
Swiss University