Nouria Hernandez

Publications | Mémoires et thèses

La recherche avancée est accessible via Serval

Les publications peuvent être gérées en accédant à Serval via MyUnil


90 publications

2023 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 | 1990 | 1989 | 1988 | 1986 | 1985 | 1983 |
 
Contrasting effects of whole-body and hepatocyte-specific deletion of the RNA polymerase III repressor Maf1 in the mouse.
Willemin G., Mange F., Praz V., Lorrain S., Cousin P., Roger C., Willis I.M., Hernandez N., 2023. Frontiers in molecular biosciences, 10 p. 1297800. Peer-reviewed.
MAF1 is a chronic repressor of RNA polymerase III transcription in the mouse.
Bonhoure N., Praz V., Moir R.D., Willemin G., Mange F., Moret C., Willis I.M., Hernandez N., 2020/07/20. Scientific reports, 10 (1) p. 11956. Peer-reviewed.
RNA polymerase III transcription as a disease factor.
Yeganeh M., Hernandez N., 2020/07/01. Genes & development, 34 (13-14) pp. 865-882. Peer-reviewed.
How to Recruit the Correct RNA Polymerase? Lessons from snRNA Genes.
Dergai O., Hernandez N., 2019/06. Trends in genetics, 35 (6) pp. 457-469. Peer-reviewed.
Differential regulation of RNA polymerase III genes during liver regeneration.
Yeganeh M., Praz V., Carmeli C., Villeneuve D., Rib L., Guex N., Herr W., Delorenzi M., Hernandez N., CycliX consortium, 2019/02/28. Nucleic Acids Research, 47 (4) pp. 1786-1796. Peer-reviewed.
 
Metabolic programming a lean phenotype by deregulation of RNA polymerase III.
Willis I.M., Moir R.D., Hernandez N., 2018/11/27. Proceedings of the National Academy of Sciences of the United States of America, 115 (48) pp. 12182-12187. Peer-reviewed.
Cycles of gene expression and genome response during mammalian tissue regeneration.
Rib L., Villeneuve D., Minocha S., Praz V., Hernandez N., Guex N., Herr W., CycliX Consortium, 2018/09/12. Epigenetics & chromatin, 11 (1) p. 52. Peer-reviewed.
Mechanism of selective recruitment of RNA polymerases II and III to snRNA gene promoters.
Dergai O., Cousin P., Gouge J., Satia K., Praz V., Kuhlman T., Lhôte P., Vannini A., Hernandez N., 2018/05/01. Genes & development, 32 (9-10) pp. 711-722. Peer-reviewed.
Molecular mechanisms of Bdp1 in TFIIIB assembly and RNA polymerase III transcription initiation.
Gouge J., Guthertz N., Kramm K., Dergai O., Abascal-Palacios G., Satia K., Cousin P., Hernandez N., Grohmann D., Vannini A., 2017/07/25. Nature communications, 8 (1) p. 130. Peer-reviewed.
Diurnal regulation of RNA polymerase III transcription is under the control of both the feeding-fasting response and the circadian clock.
Mange F., Praz V., Migliavacca E., Willis I.M., Schütz F., Hernandez N., CycliX Consortium, 2017/06. Genome research, 27 (6) pp. 973-984. Peer-reviewed.
A transcribed enhancer dictates mesendoderm specification in pluripotency.
Alexanian M., Maric D., Jenkinson S.P., Mina M., Friedman C.E., Ting C.C., Micheletti R., Plaisance I., Nemir M., Maison D. et al., 2017. Nature Communications, 8 (1) p. 1806. Peer-reviewed.
Transcriptional interference by RNA polymerase III affects expression of the Polr3e gene.
Yeganeh M., Praz V., Cousin P., Hernandez N., 2017. Genes and Development, 31 (4) pp. 413-421. Peer-reviewed.
Transcriptional regulatory logic of the diurnal cycle in the mouse liver.
Sobel J.A., Krier I., Andersin T., Raghav S., Canella D., Gilardi F., Kalantzi A.S., Rey G., Weger B., Gachon F. et al., 2017. PLoS biology, 15 (4) pp. e2001069. Peer-reviewed.
Human MAF1 targets and represses active RNA polymerase III genes by preventing recruitment rather than inducing long-term transcriptional arrest.
Orioli A., Praz V., Lhôte P., Hernandez N., 2016/03. Genome research, 26 (5) pp. 624-635. Peer-reviewed.
Loss of the RNA polymerase III repressor MAF1 confers obesity resistance.
Bonhoure N., Byrnes A., Moir R.D., Hodroj W., Preitner F., Praz V., Marcelin G., Chua S.C., Martinez-Lopez N., Singh R. et al., 2015. Genes and Development, 29 (9) pp. 934-947.
 
Population Variation and Genetic Control of Modular Chromatin Architecture in Humans.
Waszak S.M., Delaneau O., Gschwind A.R., Kilpinen H., Raghav S.K., Witwicki R.M., Orioli A., Wiederkehr M., Panousis N.I., Yurovsky A. et al., 2015. Cell, 162 (5) pp. 1039-1050. Peer-reviewed.
Redox Signaling by the RNA Polymerase III TFIIB-Related Factor Brf2.
Gouge J., Satia K., Guthertz N., Widya M., Thompson A.J., Cousin P., Dergai O., Hernandez N., Vannini A., 2015. Cell, 163 (6) pp. 1375-1387.
Gene duplication and neofunctionalization: POLR3G and POLR3GL.
Renaud M., Praz V., Vieu E., Florens L., Washburn M.P., L'hôte P., Hernandez N., 2014. Genome Research, 24 (1) pp. 37-51.
Identification and removal of low-complexity sites in allele-specific analysis of ChIP-seq data.
Waszak S.M., Kilpinen H., Gschwind A.R., Orioli A., Raghav S.K., Witwicki R.M., Migliavacca E., Yurovsky A., Lappalainen T., Hernandez N. et al., 2014. Bioinformatics, 30 (2) pp. 165-171.
Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization.
Bonhoure N., Bounova G., Bernasconi D., Praz V., Lammers F., Canella D., Willis I.M., Herr W., Hernandez N., Delorenzi M. et al., 2014. Genome Research, 24 (7) pp. 1157-1168. Peer-reviewed.
Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription.
Kilpinen H., Waszak S.M., Gschwind A.R., Raghav S.K., Witwicki R.M., Orioli A., Migliavacca E., Wiederkehr M., Gutierrez-Arcelus M., Panousis N.I. et al., 2013. Science, 342 (6159) pp. 744-747.
A multiplicity of factors contributes to selective RNA polymerase III occupancy of a subset of RNA polymerase III genes in mouse liver.
Canella D., Bernasconi D., Gilardi F., LeMartelot G., Migliavacca E., Praz V., Cousin P., Delorenzi M., Hernandez N., CycliX Consortium, 2012. Genome Research, 22 (4) pp. 666-680. Peer-reviewed.
Eeny meeny miny moe, catch a transcript by the toe, or how to enumerate eukaryotic transcripts.
Strick T.R., Hernandez N., 2012. Genes and Development, 26 (15) pp. 1643-1647.
Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.
Le Martelot G., Canella D., Symul L., Migliavacca E., Gilardi F., Liechti R., Martin O., Harshman K., Delorenzi M., Desvergne B. et al., 2012. PLoS Biology, 10 (11) pp. e1001442. Peer-reviewed.
Genomic Study of RNA Polymerase II and III SNAP(c)-Bound Promoters Reveals a Gene Transcribed by Both Enzymes and a Broad Use of Common Activators.
James Faresse N., Canella D., Praz V., Michaud J., Romascano D., Hernandez N., 2012. PLoS Genetics, 8 (11) pp. e1003028.
 
Nanopore detection of single molecule RNAP-DNA transcription complex.
Raillon C., Cousin P., Traversi F., Garcia-Cordero E., Hernandez N., Radenovic A., 2012. Nano Letters, 12 (3) pp. 1157-1164.
Widespread occurrence of non-canonical transcription termination by human RNA polymerase III.
Orioli A., Pascali C., Quartararo J., Diebel K.W., Praz V., Romascano D., Percudani R., van Dyk L.F., Hernandez N., Teichmann M. et al., 2011. Nucleic Acids Research, 39 (13) pp. 5499-5512.
 
mTORC1 directly phosphorylates and regulates human MAF1.
Michels A.A., Robitaille A.M., Buczynski-Ruchonnet D., Hodroj W., Reina J.H., Hall M.N., Hernandez N., 2010/08. Molecular and cellular biology, 30 (15) pp. 3749-3757. Peer-reviewed.
Defining the RNA polymerase III transcriptome: Genome-wide localization of the RNA polymerase III transcription machinery in human cells.
Canella D., Praz V., Reina J.H., Cousin P., Hernandez N., 2010. Genome Research, 20 (6) pp. 710-721. Peer-reviewed.
Mitotic functions for SNAP45, a subunit of the small nuclear RNA-activating protein complex SNAPc.
Shanmugam M., Hernandez N., 2008. Journal of Biological Chemistry, 283 (21) pp. 14845-14846. Peer-reviewed.
 
Identification of novel functional TBP-binding sites and general factor repertoires.
Denissov S., van Driel M., Voit R., Hekkelman M., Hulsen T., Hernandez N., Grummt I., Wehrens R., Stunnenberg H., 2007/02. EMBO Journal, 26 (4) pp. 944-954. Peer-reviewed.
 
CHD8 associates with human Staf and contributes to efficient U6 RNA polymerase III transcription.
Yuan C.C., Zhao X., Florens L., Swanson S.K., Washburn M.P., Hernandez N., 2007. Molecular and Cellular Biology, 27 (24) pp. 8729-8738. Peer-reviewed.
On a roll for new TRF targets.
Reina J.H., Hernandez N., 2007. Genes and Development, 21 (22) pp. 2855-2860. Peer-reviewed.
 
A role for Yin Yang-1 (YY1) in the assembly of snRNA transcription complexes.
Emran F., Florens L., Ma B., Swanson S.K., Washburn M.P., Hernandez N., 2006. Gene, 377 pp. 96-108. Peer-reviewed.
 
Actin's latest act: polymerizing to facilitate transcription?
Vieu E., Hernandez N., 2006. Nature Cell Biology, 8 (7) pp. 650-651. Peer-reviewed.
 
Does Pol I talk to Pol II? Coordination of RNA polymerases in ribosome biogenesis.
Michels A.A., Hernandez N., 2006. Genes and Development, 20 (15) pp. 1982-1985.
Maf1, a new player in the regulation of human RNA polymerase III transcription.
Reina J.H., Azzouz T.N., Hernandez N., 2006. PLoS ONE, 1 pp. e134. Peer-reviewed.
 
Artificial zinc finger fusions targeting Sp1-binding sites and the trans-activator-responsive element potently repress transcription and replication of HIV-1.
Kim Y.S., Kim J.M., Jung D.L., Kang J.E., Lee S., Kim J.S., Seol W., Shin H.C., Kwon H.S., Van Lint C. et al., 2005. Journal of Biological Chemistry, 280 (22) pp. 21545-21552. Peer-reviewed.
 
Structure-function analysis of the human TFIIB-related factor II protein reveals an essential role for the C-terminal domain in RNA polymerase III transcription.
Saxena A., Ma B., Schramm L., Hernandez N., 2005. Molecular and Cellular Biology, 25 (21) pp. 9406-9418. Peer-reviewed.
 
A role for beta-actin in RNA polymerase III transcription.
Hu P., Wu S., Hernandez N., 2004. Genes and Development, 18 (24) pp. 3010-3015.
 
CK2 phosphorylation of Bdp1 executes cell cycle-specific RNA polymerase III transcription repression.
Hu P., Samudre K., Wu S., Sun Y., Hernandez N., 2004. Molecular Cell, 16 (1) pp. 81-92.
 
A minimal RNA polymerase III transcription system from human cells reveals positive and negative regulatory roles for CK2.
Hu P., Wu S., Hernandez N., 2003. Molecular Cell, 12 (3) pp. 699-709.
 
A shared surface of TBP directs RNA polymerase II and III transcription via association with different TFIIB family members.
Zhao X., Schramm L., Hernandez N., Herr W., 2003. Molecular Cell, 11 (1) pp. 151-161.
 
Flexible DNA binding of the BTB/POZ-domain protein FBI-1.
Pessler F., Hernandez N., 2003. Journal of Biological Chemistry, 278 (31) pp. 29327-29335.
 
Characterization of human RNA polymerase III identifies orthologues for Saccharomyces cerevisiae RNA polymerase III subunits.
Hu P., Wu S., Sun Y., Yuan C.C., Kobayashi R., Myers M.P., Hernandez N., 2002. Molecular and Cellular Biology, 22 (22) pp. 8044-8055.
 
FBI-1 can stimulate HIV-1 Tat activity and is targeted to a novel subnuclear domain that includes the Tat-P-TEFb-containing nuclear speckles.
Pendergrast P.S., Wang C., Hernandez N., Huang S., 2002. Molecular Biology of the Cell, 13 (3) pp. 915-929.
 
Recruitment of RNA polymerase III to its target promoters.
Schramm L., Hernandez N., 2002. Genes and Development, 16 (20) pp. 2593-2620.
 
Redundant cooperative interactions for assembly of a human U6 transcription initiation complex.
Ma B., Hernandez N., 2002. Molecular and Cellular Biology, 22 (22) pp. 8067-8078.
 
A positioned nucleosome on the human U6 promoter allows recruitment of SNAPc by the Oct-1 POU domain.
Zhao X., Pendergrast P.S., Hernandez N., 2001/03. Molecular Cell, 7 (3) pp. 539-549.
 
A map of protein-protein contacts within the small nuclear RNA-activating protein complex SNAPc.
Ma B., Hernandez N., 2001. Journal of Biological Chemistry, 276 (7) pp. 5027-5035.
 
Reconstitution of transcription from the human U6 small nuclear RNA promoter with eight recombinant polypeptides and a partially purified RNA polymerase III complex.
Chong S.S., Hu P., Hernandez N., 2001. Journal of Biological Chemistry, 276 (23) pp. 20727-20734.
 
Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription.
Hernandez N., 2001. Journal of Biological Chemistry, 276 (29) pp. 26733-26736.
 
Different human TFIIIB activities direct RNA polymerase III transcription from TATA-containing and TATA-less promoters.
Schramm L., Pendergrast P.S., Sun Y., Hernandez N., 2000/10. Genes and Development, 14 (20) pp. 2650-2663.
 
SNAP(c): a core promoter factor with a built-in DNA-binding damper that is deactivated by the Oct-1 POU domain.
Mittal V., Ma B., Hernandez N., 1999/07. Genes and Development, 13 (14) pp. 1807-1821.
 
FBI-1, a factor that binds to the HIV-1 inducer of short transcripts (IST), is a POZ domain protein.
Morrison D.J., Pendergrast P.S., Stavropoulos P., Colmenares S.U., Kobayashi R., Hernandez N., 1999/03. Nucleic Acids Research, 27 (5) pp. 1251-1262.
 
The general transcription factors IIA, IIB, IIF, and IIE are required for RNA polymerase II transcription from the human U1 small nuclear RNA promoter.
Kuhlman T.C., Cho H., Reinberg D., Hernandez N., 1999/03. Molecular and Cellular Biology, 19 (3) pp. 2130-2141.
 
The Oct-1 POU domain activates snRNA gene transcription by contacting a region in the SNAPc largest subunit that bears sequence similarities to the Oct-1 coactivator OBF-1.
Ford E., Strubin M., Hernandez N., 1998/11. Genes and Development, 12 (22) pp. 3528-3540.
 
SNAP19 mediates the assembly of a functional core promoter complex (SNAPc) shared by RNA polymerases II and III.
Henry R.W., Mittal V., Ma B., Kobayashi R., Hernandez N., 1998/09. Genes and Development, 12 (17) pp. 2664-2672.
 
The HIV-1 inducer of short transcripts activates the synthesis of 5,6-dichloro-1-beta-D-benzimidazole-resistant short transcripts in vitro.
Pessler F., Hernandez N., 1998/02. Journal of Biological Chemistry, 273 (9) pp. 5375-5384.
 
Crossing the line between RNA polymerases: transcription of human snRNA genes by RNA polymerases II and III.
Henry R.W., Ford E., Mital R., Mittal V., Hernandez N., 1998. Cold Spring Harbor Symposia on Quantitative Biology, 63 pp. 111-120. Peer-reviewed.
 
The large subunit of basal transcription factor SNAPc is a Myb domain protein that interacts with Oct-1.
Wong M.W., Henry R.W., Ma B., Kobayashi R., Klages N., Matthias P., Strubin M., Hernandez N., 1998/01. Molecular and Cellular Biology, 18 (1) pp. 368-377.
 
Purification and characterization of FBI-1, a cellular factor that binds to the human immunodeficiency virus type 1 inducer of short transcripts.
Pessler F., Pendergrast P.S., Hernandez N., 1997/07. Molecular and Cellular Biology, 17 (7) pp. 3786-3798.
 
Characterization of a trimeric complex containing Oct-1, SNAPc, and DNA.
Ford E., Hernandez N., 1997/06. Journal of Biological Chemistry, 272 (25) pp. 16048-16055.
 
RNA-targeted activators, but not DNA-targeted activators, repress the synthesis of short transcripts at the human immunodeficiency virus type 1 long terminal repeat.
Pendergrast P.S., Hernandez N., 1997/02. Journal of Virology, 71 (2) pp. 910-917.
 
Role for the amino-terminal region of human TBP in U6 snRNA transcription.
Mittal V., Hernandez N., 1997/02. Science, 275 (5303) pp. 1136-1140.
 
The largest subunit of human RNA polymerase III is closely related to the largest subunit of yeast and trypanosome RNA polymerase III.
Sepehri S., Hernandez N., 1997. Genome Research, 7 (10) pp. 1006-1019.
 
Cloning and characterization of SNAP50, a subunit of the snRNA-activating protein complex SNAPc.
Henry R.W., Ma B., Sadowski C.L., Kobayashi R., Hernandez N., 1996/12. EMBO Journal, 15 (24) pp. 7129-7136. Peer-reviewed.
 
RNA polymerase III transcription from the human U6 and adenovirus type 2 VAI promoters has different requirements for human BRF, a subunit of human TFIIIB.
Mital R., Kobayashi R., Hernandez N., 1996/12. Molecular and Cellular Biology, 16 (12) pp. 7031-7042.
 
Mutations in the carboxy-terminal domain of TBP affect the synthesis of human immunodeficiency virus type 1 full-length and short transcripts similarly.
Pendergrast P.S., Morrison D., Tansey W.P., Hernandez N., 1996/08. Journal of Virology, 70 (8) pp. 5025-5034.
 
The Oct-1 POU-specific domain can stimulate small nuclear RNA gene transcription by stabilizing the basal transcription complex SNAPc.
Mittal V., Cleary M.A., Herr W., Hernandez N., 1996/05. Molecular and Cellular Biology, 16 (5) pp. 1955-1965.
 
The SNAP45 subunit of the small nuclear RNA (snRNA) activating protein complex is required for RNA polymerase II and III snRNA gene transcription and interacts with the TATA box binding protein.
Sadowski C.L., Henry R.W., Kobayashi R., Hernandez N., 1996/04. Proceedings of the National Academy of Sciences of the United States of America, 93 (9) pp. 4289-4293. Peer-reviewed.
 
Monoclonal antibodies directed against the amino-terminal domain of human TBP cross-react with TBP from other species.
Ruppert S.M., McCulloch V., Meyer M., Bautista C., Falkowski M., Stunnenberg H.G., Hernandez N., 1996/02. Hybridoma, 15 (1) pp. 55-68. Peer-reviewed.
 
A TBP-TAF complex required for transcription of human snRNA genes by RNA polymerase II and III.
Henry R.W., Sadowski C.L., Kobayashi R., Hernandez N., 1995/04. Nature, 374 (6523) pp. 653-656. Peer-reviewed.
 
Transcription of snRNA genes by RNA polymerases II and III.
Lobo S. M., Hernandez N., 1994. pp. 127-159 dans Conaway R.C., Conaway J.W. (eds.) Transcription : mechanisms and regulation, Raven Press.
 
Targeting TBP to a non-TATA box cis-regulatory element: a TBP-containing complex activates transcription from snRNA promoters through the PSE.
Sadowski C.L., Henry R.W., Lobo S.M., Hernandez N., 1993/08. Genes and Development, 7 (8) pp. 1535-1548.
 
TBP, a universal eukaryotic transcription factor?
Hernandez N., 1993/07. Genes and Development, 7 (7B) pp. 1291-1308.
 
Characterization of the inducer of short transcripts, a human immunodeficiency virus type 1 transcriptional element that activates the synthesis of short RNAs.
Sheldon M., Ratnasabapathy R., Hernandez N., 1993/02. Molecular and Cellular Biology, 13 (2) pp. 1251-1263.
 
A TBP complex essential for transcription from TATA-less but not TATA-containing RNA polymerase III promoters is part of the TFIIIB fraction.
Lobo S.M., Tanaka M., Sullivan M.L., Hernandez N., 1992/12. Cell, 71 (6) pp. 1029-1040. Peer-reviewed.
 
Transcription of vertebrate snRNA genes and related genes.
Hernandez N., 1992. pp. 281-313 dans McKnight S. L., Yamamoto K.R. (eds.) Transcriptional Regulation chap. 11, Cold Spring Harbor Laboratory Press.
 
The cloned RNA polymerase II transcription factor IID selects RNA polymerase III to transcribe the human U6 gene in vitro.
Lobo S.M., Lister J., Sullivan M.L., Hernandez N., 1991/08. Genes and Development, 5 (8) pp. 1477-1489.
 
The HIV-1 long terminal repeat contains an unusual element that induces the synthesis of short RNAs from various mRNA and snRNA promoters.
Ratnasabapathy R., Sheldon M., Johal L., Hernandez N., 1990/12. Genes and Development, 4 (12A) pp. 2061-2074.
 
cis-acting elements required for RNA polymerase II and III transcription in the human U2 and U6 snRNA promoters.
Lobo S.M., Ifill S., Hernandez N., 1990/05. Nucleic Acids Research, 18 (10) pp. 2891-2899.
 
Transcription of the human U2 and U6 RNA genes
Hernandez N., Lobo S., Lister J., Ifill S., Ratnasabapathy R., Sheldon M., Johal L., 1990. Molecular Biology Reports, 14 (2-3) p. 167.
 
A 7 bp mutation converts a human RNA polymerase II snRNA promoter into an RNA polymerase III promoter.
Lobo S.M., Hernandez N., 1989/07. Cell, 58 (1) pp. 55-67.
 
Activation of the U2 snRNA promoter by the octamer motif defines a new class of RNA polymerase II enhancer elements.
Tanaka M., Grossniklaus U., Herr W., Hernandez N., 1988/12. Genes and Development, 2 (12B) pp. 1764-1778.
 
Elements required for transcription initiation of the human U2 snRNA gene coincide with elements required for snRNA 3' end formation.
Hernandez N., Lucito R., 1988/10. EMBO Journal, 7 (10) pp. 3125-3134. Peer-reviewed.
 
Formation of the 3' end of U1 snRNA requires compatible snRNA promoter elements.
Hernandez N., Weiner A.M., 1986/10. Cell, 47 (2) pp. 249-258.
 
Formation of the 3' end of U1 snRNA is directed by a conserved sequence located downstream of the coding region.
Hernandez N., 1985/07. EMBO Journal, 4 (7) pp. 1827-1837. Peer-reviewed.
 
Splicing of in vitro synthesized messenger RNA precursors in HeLa cell extracts.
Hernandez N., Keller W., 1983/11. Cell, 35 (1) pp. 89-99.
 
Signals regulating hepatitis B surface antigen transcription.
Cattaneo R., Will H., Hernandez N., Schaller H., 1983/09. Nature, 305 (5932) pp. 336-338. Peer-reviewed.
Partagez:
Unicentre - CH-1015 Lausanne
Suisse
Tél. +41 21 692 11 11
Swiss University