Pierre Goloubinoff

Publications | Mémoires et thèses

La recherche avancée est accessible via Serval

Les publications peuvent être gérées en accédant à Serval via MyUnil


111 publications

2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1991 | 1990 | 1989 | 1988 | 1987 | 1986 | 1985 | 1984 |
 
Tunable microsecond dynamics of an allosteric switch regulate the activity of a AAA+ disaggregation machine.
Mazal H., Iljina M., Barak Y., Elad N., Rosenzweig R., Goloubinoff P., Riven I., Haran G., 2019/03/29. Nature communications, 10 (1) p. 1438. Peer-reviewed.
 
Function, evolution, and structure of J-domain proteins.
Kampinga H.H., Andreasson C., Barducci A., Cheetham M.E., Cyr D., Emanuelsson C., Genevaux P., Gestwicki J.E., Goloubinoff P., Huerta-Cepas J. et al., 2019/01. Cell stress & chaperones, 24 (1) pp. 7-15. Peer-reviewed.
 
Emerging fields in chaperone proteins: A French workshop.
Mileo E., Ilbert M., Barducci A., Bordes P., Castanié-Cornet M.P., Garnier C., Genevaux P., Gillet R., Goloubinoff P., Ochsenbein F. et al., 2018/08. Biochimie, 151 pp. 159-165. Peer-reviewed.
Chaperones convert the energy from ATP into the nonequilibrium stabilization of native proteins.
Goloubinoff P., Sassi A.S., Fauvet B., Barducci A., De Los Rios P., 2018. Nature Chemical Biology, 14 (4) pp. 388-395. Peer-reviewed.
Misfolding and aggregation of nascent proteins: a novel mode of toxic cadmium action in vivo.
Tamás M.J., Fauvet B., Christen P., Goloubinoff P., 2018. Current Genetics, 64 (1) pp. 177-181. Peer-reviewed.
ZnJ2 Is a Member of a Large Chaperone Family in the Chloroplast of Photosynthetic Organisms that Features a DnaJ-Like Zn-Finger Domain.
Doron L., Goloubinoff P., Shapira M., 2018. Frontiers in molecular biosciences, 5 p. 2. Peer-reviewed.
 
The growing world of small heat shock proteins: from structure to functions.
Carra S., Alberti S., Arrigo P.A., Benesch J.L., Benjamin I.J., Boelens W., Bartelt-Kirbach B., Brundel BJJM, Buchner J., Bukau B. et al., 2017/07. Cell stress & chaperones, 22 (4) pp. 601-611. Peer-reviewed.
 
Cadmium Causes Misfolding and Aggregation of Cytosolic Proteins in Yeast.
Jacobson T., Priya S., Sharma S.K., Andersson S., Jakobsson S., Tanghe R., Ashouri A., Rauch S., Goloubinoff P., Christen P. et al., 2017. Molecular and Cellular Biology, 37 (17) pp. 1-15. Peer-reviewed.
Editorial: The HSP70 Molecular Chaperone Machines.
Goloubinoff P., 2017. Frontiers in Molecular Biosciences, 4 p. 1. Peer-reviewed.
 
Hsp70 chaperones use ATP to remodel native protein oligomers and stable aggregates by entropic pulling.
De Los Rios P., Goloubinoff P., 2016/09/06. Nature structural & molecular biology, 23 (9) pp. 766-769. Peer-reviewed.
Quantitative proteomics of rat livers shows that unrestricted feeding is stressful for proteostasis with implications on life span.
Gat-Yablonski G., Finka A., Pinto G., Quadroni M., Shtaif B., Goloubinoff P., 2016/08. Aging, 8 (8) pp. 1735-1758. Peer-reviewed.
Experimental Milestones in the Discovery of Molecular Chaperones as Polypeptide Unfolding Enzymes.
Finka A., Mattoo R.U., Goloubinoff P., 2016. Annual Review of Biochemistry, 85 pp. 715-742. Peer-reviewed.
Mechanisms of protein homeostasis in health, aging and disease.
Goloubinoff P., 2016. Swiss Medical Weekly, 146 pp. w14306. Peer-reviewed.
 
Farming amphetamines: Khat (Catha edulis Forsk) a traditional plant with psychoactive and medicinal properties
Ben Shabat S., Goloubinoff P., Dudai N., Lewinsohn E., 2015. pp. 181-198 dans Zohara Y, Dudai N. (eds.) Medicinal and Aromatic Plants of the Middle-East chap. 9, Springer.
Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones.
Finka A., Sharma S.K., Goloubinoff P., 2015. Frontiers In Molecular Biosciences, 2 p. 29. Peer-reviewed.
 
Quantitative proteomics of heat-treated human cells show an across-the-board mild depletion of housekeeping proteins to massively accumulate few HSPs.
Finka A., Sood V., Quadroni M., Rios Pde L, Goloubinoff P., 2015. Cell Stress and Chaperones, 20 (4) pp. 605-620. Peer-reviewed.
Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins.
Mattoo R.U., Goloubinoff P., 2014. Cellular and Molecular Life Sciences, 71 (17) pp. 3311-3325. Peer-reviewed.
Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins.
Nakamoto H., Fujita K., Ohtaki A., Watanabe S., Narumi S., Maruyama T., Suenaga E., Misono T.S., Kumar P.K., Goloubinoff P. et al., 2014. Journal of Biological Chemistry, 289 (9) pp. 6110-6119.
Recent and future grand challenges in protein folding, misfolding, and degradation
Goloubinoff P., 2014. Frontiers in Molecular Biosciences, 1 (1) pp. 1-3. Peer-reviewed.
 
Synergism between a foldase and an unfoldase: reciprocal dependence between the thioredoxin-like activity of DnaJ and the polypeptide-unfolding activity of DnaK.
Mattoo R.U., Farina Henriquez Cuendet A., Subanna S., Finka A., Priya S., Sharma S.K., Goloubinoff P., 2014. Frontiers in Molecular Biosciences, 1 (7) p. 7.
The CNGCb and CNGCd genes from Physcomitrella patens moss encode for thermosensory calcium channels responding to fluidity changes in the plasma membrane.
Finka A., Goloubinoff P., 2014. Cell Stress and Chaperones, 19 (1) pp. 83-90.
 
Biophysical characterization of two different stable misfolded monomeric polypeptides that are chaperone-amenable substrates.
Natalello A., Mattoo R.U., Priya S., Sharma S.K., Goloubinoff P., Doglia S.M., 2013. Journal of Molecular Biology, 425 (7) pp. 1158-1171.
 
GroEL and CCT are catalytic unfoldases mediating out-of-cage polypeptide refolding without ATP.
Priya S., Sharma S.K., Sood V., Mattoo R.U., Finka A., Azem A., De Los Rios P., Goloubinoff P., 2013. Proceedings of the National Academy of Sciences of the United States of America, 110 (18) pp. 7199-7204.
 
Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with hsp70 to solubilize protein aggregates.
Mattoo R.U., Sharma S.K., Priya S., Finka A., Goloubinoff P., 2013. Journal of Biological Chemistry, 288 (29) pp. 21399-21411.
 
Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides.
Priya S., Sharma S.K., Goloubinoff P., 2013. FEBS Letters, 587 (13) pp. 1981-1987.
 
Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis.
Finka A., Goloubinoff P., 2013. Cell Stress and Chaperones, 18 (5) pp. 591-605.
The membrane-associated transient receptor potential vanilloid channel is the central heat shock receptor controlling the cellular heat shock response in epithelial cells.
Bromberg Z., Goloubinoff P., Saidi Y., Weiss Y.G., 2013. PLoS One, 8 (2) pp. e57149.
 
Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast.
Jacobson T., Navarrete C., Sharma S.K., Sideri T.C., Ibstedt S., Priya S., Grant C.M., Christen P., Goloubinoff P., Tamás M.J., 2012. Journal of Cell Science, 125 (Pt 21) pp. 5073-5083. Peer-reviewed.
 
Heat shock response in photosynthetic organisms: membrane and lipid connections.
Horváth I., Glatz A., Nakamoto H., Mishkind M.L., Munnik T., Saidi Y., Goloubinoff P., Harwood J.L., Vigh L., 2012. Progress in Lipid Research, 51 (3) pp. 208-220. Peer-reviewed.
 
How do plants feel the heat?
Mittler R., Finka A., Goloubinoff P., 2012. Trends in Biochemical Sciences, 37 (3) pp. 118-125. Peer-reviewed.
 
Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance.
Finka A., Cuendet A.F., Maathuis F.J., Saidi Y., Goloubinoff P., 2012. Plant Cell, 24 (8) pp. 3333-3348. Peer-reviewed.
 
Protein folding: Chaperoning protein evolution.
De Los Rios P., Goloubinoff P., 2012. Nature Chemical Biology, 8 (3) pp. 226-228. Peer-reviewed.
 
Reactivation of protein aggregates by mortalin and Tid1-the human mitochondrial Hsp70 chaperone system.
Iosefson O., Sharon S., Goloubinoff P., Azem A., 2012. Cell Stress and Chaperones, 17 (1) pp. 57-66.
 
Heat perception and signalling in plants: a tortuous path to thermotolerance.
Saidi Y., Finka A., Goloubinoff P., 2011. New Phytologist, 190 (3) pp. 556-565.
 
Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells.
Finka A., Mattoo R.U., Goloubinoff P., 2011. Cell Stress and Chaperones, 16 (1) pp. 15-31.
 
Molecular chaperones and associated cellular clearance mechanisms against toxic protein conformers in Parkinson's disease.
Hinault M.P., Farina-Henriquez-Cuendet A., Goloubinoff P., 2011. Neuro-degenerative Diseases, 8 (6) pp. 397-412.
 
Probing the different chaperone activities of the bacterial HSP70-HSP40 system using a thermolabile luciferase substrate.
Sharma S.K., De Los Rios P., Goloubinoff P., 2011. Proteins, 79 (6) pp. 1991-1998.
 
The novel hydroxylamine derivative NG-094 suppresses polyglutamine protein toxicity in Caenorhabditis elegans.
Haldimann P., Muriset M., Vígh L., Goloubinoff P., 2011. Journal of Biological Chemistry, 286 (21) pp. 18784-18794.
 
Membrane lipid composition affects plant heat sensing and modulates Ca ( 2+) -dependent heat shock response.
Saidi Y., Peter M., Finka A., Cicekli C., Vigh L., Goloubinoff P., 2010. Plant Signaling and Behavior, 5 (12) pp. 1530-1533.
 
Stable alpha-synuclein oligomers strongly inhibit chaperone activity of the Hsp70 system by weak interactions with J-domain co-chaperones.
Hinault M.P., Cuendet A.F., Mattoo R.U., Mensi M., Dietler G., Lashuel H.A., Goloubinoff P., 2010. Journal of Biological Chemistry, 285 (49) pp. 38173-38182.
 
The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase.
Sharma S.K., De los Rios P., Christen P., Lustig A., Goloubinoff P., 2010. Nature Chemical Biology, 6 (12) pp. 914-920.
 
Disaggregating chaperones: an unfolding story.
Sharma S.K., Christen P., Goloubinoff P., 2009. Current Protein and Peptide Science, 10 (5) pp. 432-446. Peer-reviewed.
 
The CaMV 35S promoter has a weak expression activity in dark grown tissues of moss Physcomitrella patens.
Saidi Y., Schaefer D.G., Goloubinoff P., Zrÿd J.P., Finka A., 2009. Plant Signaling and Behavior, 4 (5) pp. 457-459. Peer-reviewed.
 
The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane.
Saidi Y., Finka A., Muriset M., Bromberg Z., Weiss Y.G., Maathuis F.J., Goloubinoff P., 2009. Plant Cell, 21 (9) pp. 2829-2843. Peer-reviewed.
Enhanced expression of 70-kilodalton heat shock protein limits cell division in a sepsis-induced model of acute respiratory distress syndrome.
Bromberg Z., Raj N., Goloubinoff P., Deutschman C.S., Weiss Y.G., 2008. Critical Care Medicine, 36 (1) pp. 246-255.
 
Heavy metal ions are potent inhibitors of protein folding.
Sharma S.K., Goloubinoff P., Christen P., 2008. Biochemical and Biophysical Research Communications, 372 (2) pp. 341-345.
 
The knock-out of ARP3a gene affects F-actin cytoskeleton organization altering cellular tip growth, morphology and development in moss Physcomitrella patens.
Finka A., Saidi Y., Goloubinoff P., Neuhaus J.M., Zrÿd J.P., Schaefer D.G., 2008. Cell Motility and the Cytoskeleton, 65 (10) pp. 769-784.
 
Activation of the heat shock response in plants by chlorophenols: transgenic Physcomitrella patens as a sensitive biosensor for organic pollutants.
Saidi Y., Domini M., Choy F., Zryd J.P., Schwitzguebel J.P., Goloubinoff P., 2007. Plant, Cell and Environment, 30 (6) pp. 753-763.
 
Enhanced heat shock protein 70 expression alters proteasomal degradation of IkappaB kinase in experimental acute respiratory distress syndrome.
Weiss Y.G., Bromberg Z., Raj N., Raphael J., Goloubinoff P., Ben-Neriah Y., Deutschman C.S., 2007. Critical Care Medicine, 35 (9) pp. 2128-2138.
 
In vivo visualization of F-actin structures during the development of the moss Physcomitrella patens.
Finka A., Schaefer D.G., Saidi Y., Goloubinoff P., Zrÿd J.P., 2007. New Phytologist, 174 (1) pp. 63-76.
 
Molecular crime and cellular punishment: active detoxification of misfolded and aggregated proteins in the cell by the chaperone and protease networks.
Hinault M.P., Goloubinoff P., 2007. Advances in Experimental Medicine and Biology, 594 pp. 47-54.
 
The mechanism of Hsp70 chaperones: (entropic) pulling the models together.
Goloubinoff P., De Los Rios P., 2007. Trends in Biochemical Sciences, 32 (8) pp. 372-380.
 
Chaperones and proteases: cellular fold-controlling factors of proteins in neurodegenerative diseases and aging.
Hinault M.P., Ben-Zvi A., Goloubinoff P., 2006. Journal of Molecular Neuroscience, 30 (3) pp. 249-265.
 
Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling.
De Los Rios P., Ben-Zvi A., Slutsky O., Azem A., Goloubinoff P., 2006. Proceedings of the National Academy of Sciences of the United States of America, 103 (16) pp. 6166-6171.
 
L'agrégation toxique des protéines: une forme de "delinquance moléculaire" activement combattue dans la cellule par les chaperones moléculaires et les protéases [The toxic aggregation of proteins: a kind of "molecular delinquency" actively fought in the cell by molecular chaperones and proteases]
Hinault M.P., Goloubinoff P., 2006. Annales de Cardiologie et d'Angéiologie, 55 (2) pp. 74-78. Peer-reviewed.
 
Mechanisms of active solubilization of stable protein aggregates by molecular chaperones
Goloubinoff P., Ben-Zvi A.P., 2006. pp. 165-174 dans Uversky V.N., Fink A.L. (eds.) Protein Misfolding, Aggregation, and Conformational Diseases. Part A. chap. 8, Springer.
 
Small heat shock proteins interact with membranes and affect membrane physical state and function
Horvath I., Balogi Z., Giese K., Chergy O., Glatz A., Vass I., Goloubinoff P., Vierling E., Vigh L., 2006. p. 81 dans 31st Congress of the Federation of European Biochemical Societies, FEBS Journal. Peer-reviewed.
 
Controlled expression of recombinant proteins in Physcomitrella patens by a conditional heat-shock promoter: a tool for plant research and biotechnology.
Saidi Y., Finka A., Chakhporanian M., Zrÿd J.P., Schaefer D.G., Goloubinoff P., 2005. Plant Molecular Biology, 59 (5) pp. 697-711. Peer-reviewed.
 
Membrane fluidization triggers membrane remodeling which affects the thermotolerance in Escherichia coli.
Shigapova N., Török Z., Balogh G., Goloubinoff P., Vígh L., Horváth I., 2005. Biochemical and Biophysical Research Communications, 328 (4) pp. 1216-1223.
 
Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid- or benzyl alcohol-overexpressed molecular chaperones.
de Marco A., Vigh L., Diamant S., Goloubinoff P., 2005. Cell Stress and Chaperones, 10 (4) pp. 329-339.
 
The emerging role for small heat-shock proteins in the regulation of lipid composition and dynamics of cell membranes
Balogi Z., Glatz A., Balogh G., Nagy E., Liberek K., Debreczeny M., Goloubinoff P., Horvath I., Vigh L., 2005. p. 358 dans 30th Congress of the Federation of European Biochemical Societies and 9th IUBMB Conference (International Union of Biochemistry and Molecular Biology), FEBS Journal. Peer-reviewed.
 
Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual hsp70 chaperones.
Ben-Zvi A., De Los Rios P., Dietler G., Goloubinoff P., 2004. Journal of Biological Chemistry, 279 (36) pp. 37298-37303. Peer-reviewed.
 
ATPase-chaperones and proteases as molecular machines that unfold toxic protein aggregates.
Goloubinoff P., 2004. pp. 55-64 dans 1er Séminaire Transalpin de Physique Living matter: A New Challenge To Physicists ?, Frontier Group.
 
The role of molecular chaperones in plants during stress
Despres B., Goloubinoff P., 2004. pp. 1002-1005 dans Goodman R.M. (eds.) Encyclopedia of plant and crop science, Marcel Dekker.
 
An Hsp90 inhibitor, geldanamycin, as a brassinosteroid antagonist: evidence from salt-exposed roots of Vigna radiata
Amzallag G.N., Goloubinoff P., 2003. Plant Biology, 5 (2) pp. 143-150.
 
Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein-disaggregation under stress.
Diamant S., Rosenthal D., Azem A., Eliahu N., Ben-Zvi A.P., Goloubinoff P., 2003. Molecular Microbiology, 49 (2) pp. 401-410.
 
A gene trap Dissociation insertion line, associated with a RING-H2 finger gene, shows tissue specific and developmental regulated expression of the gene in Arabidopsis.
Lechner E., Goloubinoff P., Genschik P., Shen W.H., 2002. Gene, 290 (1-2) pp. 63-71.
 
Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam.
Pnueli L., Hallak-Herr E., Rozenberg M., Cohen M., Goloubinoff P., Kaplan A., Mittler R., 2002. Plant Journal, 31 (3) pp. 319-330.
 
Proteinaceous infectious behavior in non-pathogenic proteins is controlled by molecular chaperones.
Ben-Zvi A.P., Goloubinoff P., 2002. Journal of Biological Chemistry, 277 (51) pp. 49422-49427. Peer-reviewed.
 
Seasonal and diurnal variations in gene expression in the desert legume Retama raetam
Merquiol E., Pneuli L., Cohen M., Simovitch M., Rachmilevitch S., Goloubinoff P., Kaplan A., Mittler R., 2002. Plant Cell and Environment, 25 (12) pp. 1627-1638. Peer-reviewed.
 
Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses.
Diamant S., Eliahu N., Rosenthal D., Goloubinoff P., 2001. Journal of Biological Chemistry, 276 (43) pp. 39586-39591. Peer-reviewed.
 
Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol.
Tomoyasu T., Mogk A., Langen H., Goloubinoff P., Bukau B., 2001. Molecular Microbiology, 40 (2) pp. 397-413.
 
Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones.
Ben-Zvi A.P., Goloubinoff P., 2001. Journal of Structural Biology, 135 (2) pp. 84-93.
 
Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding.
Török Z., Goloubinoff P., Horváth I., Tsvetkova N.M., Glatz A., Balogh G., Varvasovszki V., Los D.A., Vierling E., Crowe J.H. et al., 2001. Proceedings of the National Academy of Sciences of the United States of America, 98 (6) pp. 3098-3103.
 
From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL.
Chatellier J., Hill F., Foster N.W., Goloubinoff P., Fersht A.R., 2000. Journal of Molecular Biology, 304 (5) pp. 897-910.
 
Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery.
Diamant S., Ben-Zvi A.P., Bukau B., Goloubinoff P., 2000. Journal of Biological Chemistry, 275 (28) pp. 21107-21113. Peer-reviewed.
 
Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB.
Mogk A., Tomoyasu T., Goloubinoff P., Rüdiger S., Röder D., Langen H., Bukau B., 1999. EMBO Journal, 18 (24) pp. 6934-6949.
 
Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network.
Goloubinoff P., Mogk A., Ben-Zvi A.P., Tomoyasu T., Bukau B., 1999. Proceedings of the National Academy of Sciences of the United States of America, 96 (24) pp. 13732-13737.
 
Minimal and optimal mechanisms for GroE-mediated protein folding.
Ben-Zvi A.P., Chatellier J., Fersht A.R., Goloubinoff P., 1998. Proceedings of the National Academy of Sciences of the United States of America, 95 (26) pp. 15275-15280.
 
Purification of mammalian mitochondrial chaperonin 60 through in vitro reconstitution of active oligomers.
Viitanen P.V., Lorimer G., Bergmeier W., Weiss C., Kessel M., Goloubinoff P., 1998. Methods in Enzymology, 290 pp. 203-217.
 
Structural analysis of GroE chaperonin complexes using chemical cross-linking.
Azem A., Weiss C., Goloubinoff P., 1998. Methods in Enzymology, 290 pp. 253-268.
 
Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration.
Diamant S., Goloubinoff P., 1998. Biochemistry, 37 (27) pp. 9688-9694.
 
The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network.
Veinger L., Diamant S., Buchner J., Goloubinoff P., 1998. Journal of Biological Chemistry, 273 (18) pp. 11032-11037.
 
Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions.
Török Z., Horváth I., Goloubinoff P., Kovács E., Glatz A., Balogh G., Vígh L., 1997. Proceedings of the National Academy of Sciences of the United States of America, 94 (6) pp. 2192-2197.
 
GroES binding regulates GroEL chaperonin activity under heat shock.
Goloubinoff P., Diamant S., Weiss C., Azem A., 1997. FEBS Letters, 407 (2) pp. 215-219.
 
Fluorescence detection of symmetric GroEL14(GroES7)2 heterooligomers involved in protein release during the chaperonin cycle.
Török Z., Vigh L., Goloubinoff P., 1996. Journal of Biological Chemistry, 271 (27) pp. 16180-16186.
 
A mutant at position 87 of the GroEL chaperonin is affected in protein binding and ATP hydrolysis.
Weiss C., Goloubinoff P., 1995. Journal of Biological Chemistry, 270 (23) pp. 13956-13960.
 
Effect of free and ATP-bound magnesium and manganese ions on the ATPase activity of chaperonin GroEL14.
Diamant S., Azem A., Weiss C., Goloubinoff P., 1995. Biochemistry, 34 (1) pp. 273-277.
 
Increased efficiency of GroE-assisted protein folding by manganese ions.
Diamant S., Azem A., Weiss C., Goloubinoff P., 1995. Journal of Biological Chemistry, 270 (47) pp. 28387-28391.
 
The protein-folding activity of chaperonins correlates with the symmetric GroEL14(GroES7)2 heterooligomer.
Azem A., Diamant S., Kessel M., Weiss C., Goloubinoff P., 1995. Proceedings of the National Academy of Sciences of the United States of America, 92 (26) pp. 12021-12025.
 
Characterization of a functional GroEL14(GroES7)2 chaperonin hetero-oligomer.
Azem A., Kessel M., Goloubinoff P., 1994. Science, 265 (5172) pp. 653-656.
 
Effect of divalent cations on the molecular structure of the GroEL oligomer.
Azem A., Diamant S., Goloubinoff P., 1994. Biochemistry, 33 (21) pp. 6671-6675.
 
Molecular characterization of ancient maize: potentials and pit-falls.
Goloubinoff P., Pääbo S., Wilson A.C., 1994. pp. 113-125 dans Johannessen S., Hastorf C.A. (eds.) Corn and culture in the prehistoric New World, Westview Press.
 
The eesponse of plants to salinity - from turgor adjustments to genome modification
Lerner H.R., Amzallag G.N., Friedman Y., Goloubinoff P., 1994. Israel Journal of Plant Sciences, 42 (4) pp. 285-300. Peer-reviewed.
 
Evolution of maize inferred from sequence diversity of an Adh2 gene segment from archaeological specimens.
Goloubinoff P., Pääbo S., Wilson A.C., 1993. Proceedings of the National Academy of Sciences of the United States of America, 90 (5) pp. 1997-2001.
 
Role of chaperonins in protein folding
Goloubinoff P., Gatenby A.A., Lorimer G.H., 1991. ACS Symposium Series, 470 pp. 110-118. Peer-reviewed.
 
The role of chaperonins in the folding of proteins
Goloubinoff P., Gatenby A.A., Lorimer G.H., 1991. p. 193 dans Frontiers in Human Retrovirology and Related Topics, AIDS Research and Human Retroviruses. Peer-reviewed.
 
Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent.
Viitanen P.V., Lubben T.H., Reed J., Goloubinoff P., O'Keefe D.P., Lorimer G.H., 1990. Biochemistry, 29 (24) pp. 5665-5671.
 
The cellular function of Chaperonins
Gatenby A.A., Donaldson G.K., Goloubinoff P., LaRossa R.A., Lorimer G.H., Lubben T.H., Van Dyk T.K , Viitanen P.V., 1990. pp. 57-69 dans Schlesinger M.J., Santoro M.G., Garaci E. (eds.) Stress proteins: induction and function, Springer.
 
GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli.
Goloubinoff P., Gatenby A.A., Lorimer G.H., 1989. Nature, 337 (6202) pp. 44-47.
 
Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP.
Goloubinoff P., Christeller J.T., Gatenby A.A., Lorimer G.H., 1989. Nature, 342 (6252) pp. 884-889.
 
The assembly of ribulose bisphosphate carboxylase in Escherichia coli and isolated chloroplasts.
Gatenby A.A., Goloubinoff P., Lubben T.H., Lorimer G.H., 1989. pp. 299-309 dans Briggs W.R. (eds.) Photosynthesis, Liss.
 
Characterization of the photosystem II 32 kDa protein in Synechococcus PCC7942.
Goloubinoff P., Brusslan J., Golden S.S., Haselkorn R., Edelman M., 1988. Plant Molecular Biology, 11 (4) pp. 441-447. Peer-reviewed.
 
Molecular-dynamics of the 32,000-Dalton photosystem-II herbicide-binding protein
Mattoo A.K., Callahan F.E., Greenberg B.M., Goloubinoff P., Edelman M., 1988. ACS Symposium Series, 379 pp. 248-257. Peer-reviewed.
 
The amino terminal region delimited by Met1 and Met 37 is an integral part of the 32 kDa herbicide binding protein.
Eyal Y., Goloubinoff P., Edelman M., 1987. Plant Molecular Biology, 8 (4) pp. 337-343. Peer-reviewed.
 
The enigma of the gene coding for ribosomal protein S12 in the chloroplasts of Nicotiana.
Fromm H., Edelman M., Koller B., Goloubinoff P., Galun E., 1986. Nucleic Acids Research, 14 (2) pp. 883-898.
 
The Relationship between the Chloroplast Genome and Herbicide Resistance
Edelman M., Goloubinoff P., Marder J., Fromm H., Mattoo A., 1986. p. 60 dans Annual Meeting of the Israel Society of Botany, Israel Journal of Botany.
 
Structure-function relationships and regulation of the 32 kDa protein in the photosynthetic membranes.
Edelman M., Goloubinoff P., Marder J.B., Fromm H., Devic M., Fluhr R., Mattoo A.K., 1985. pp. 291-300 dans van Vloten-Doting L., Groot G.S.P., C.Hall T.C. (eds.) Molecular form and function of the plant genome, Plenum Press.
 
Chloroplast-coded atrazine resistance in Solanum nigrum: psbA loci from susceptible and resistant biotypes are isogenic except for a single codon change.
Goloubinoff P., Edelman M., Hallick R.B., 1984. Nucleic Acids Research, 12 (24) pp. 9489-9496.
 
Molecular architecture of the rapidly metabolized 32-kilodalton protein of photosystem II. Indications for COOH-terminal processing of a chloroplast membrane polypeptide.
Marder J.B., Goloubinoff P., Edelman M., 1984. Journal of Biological Chemistry, 259 (6) pp. 3900-3908. Peer-reviewed.
 
Structure and physiological control of the rapidly metabolized 32,000-dalton chloroplast membrane protein.
Marder J.B., Mattoo A.K, Goloubinoff P., Edelman M., 1984. pp. - dans ThornberJ.P. , StaehelinL.A. , Hallick R.B. (eds.) Biosynthesis of the photosynthetic apparatus : molecular biology, development and regulation, Liss.
Partagez:
Unicentre - CH-1015 Lausanne
Suisse
Tél. +41 21 692 11 11
Fax. +41 21 692 26 15
Swiss University